Microstructure formation in chalcogenide thin films assisted by thermal dewetting

  • Alexandre DouaudEmail author
  • Sandra Helena Messaddeq
  • Younès Messaddeq


The spontaneous formation of self-assembled and/or self-organized patterns is a fundamental and technologically significant topic. This process is achieved via a phenomenon called dewetting, should it be thermally induced, or caused by laser exposure. Although dewetting seems to be a well-known phenomenon for metallic and polymeric thin films, no proper investigation regarding glassy thin films seems to have been done. Thus, in the present study we try to elaborate on the process of thermal dewetting applied to glassy thin films of the system Agx(As20S80)100−x.


Ag2S Spinodal Decomposition Arsenic Sulfide Dewetting Process Proustite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the Canada Excellence Research Chair program (CERC: CG 096487) in Enabling Photonic Innovations for Information and Communication for their financial support. The supports of Natural Sciences and Engineering Research Council of Canada (NSERC: CG 102867) and of the Canada Foundation for Innovation (CFI: GF 105079) agencies are also acknowledged.


  1. 1.
    F. Leroy, L. Borowik, F. Cheynis, Y. Almadori, S. Curiotto, M. Trautmann, J.C. Barbé, P. Müller, How to control solid state dewetting: a short review. Surf. Sci. Rep. 71, 391–409 (2016)CrossRefGoogle Scholar
  2. 2.
    J.-M. Lee, B.-I. Kim, Thermal dewetting of Pt thin film: etch-masks for the fabrication of semiconductor nanostructures. Mater. Sci. Eng. A 449–451, 769–773 (2007)CrossRefGoogle Scholar
  3. 3.
    Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, J. Kim, Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask. Nanoscale Res. Lett. 4(4), 364–370 (2009)CrossRefGoogle Scholar
  4. 4.
    P.F. Neretina, A. Sundar, K.D. Gilroy, Z.E. Eskin, R.A. Hughes, S. Neretina, Altering the dewetting characteristics of ultrathin gold and silver films using a sacrificial antimony layer. Nanotechnology 23(49), 495604 (2012)CrossRefGoogle Scholar
  5. 5.
    A. Breitling, D. Goll, Hard magnetic FePt thin films and nanopatterns. J. Magn. Magn. Mater. 320(8), 1449–1456 (2008)CrossRefGoogle Scholar
  6. 6.
    D. Gentili, G. Foschi, F. Valle, M. Cavallini, F. Biscarini, Applications of dewetting in micro and nanotechnology. Chem. Soc. Rev. 41(12), 4430 (2012)CrossRefGoogle Scholar
  7. 7.
    S.J. Randolph, J.D. Fowlkes, A.V. Melechko, K.L. Klein, H.M. Meyer, M.L. Simpson, P.D. Rack, Controlling thin film structure for the dewetting of catalyst nanoparticle arrays for subsequent carbon nanofiber growth. Nanotechnology 18, 0–7 (2007)CrossRefGoogle Scholar
  8. 8.
    G. Reiter, Dewetting of thin polymer films. Phys. Rev. Lett. 68(1), 75–78 (1992)CrossRefGoogle Scholar
  9. 9.
    L. Xue, Y. Han, Pattern formation by dewetting of polymer thin film. Prog. Polym. Sci. 36(2), 269–293 (2011)CrossRefGoogle Scholar
  10. 10.
    P. Yoo, K. Suh, Y. Kim, D.-Y. Khang, H. Lee, Nanolithography and Patterning Techniques in Microelectronics (Elsevier, Amsterdam, 2005)Google Scholar
  11. 11.
    M. Krbal, T. Wagner, T. Srba, J. Schwarz, J. Orava, T. Kohoutek, V. Zima, L. Benes, S. Kasap, M. Frumar, Properties and structure of Agx(As0.33S0.67)100−x bulk glasses. J. Non-Cryst. Solids 353(13–15), 1232–1237 (2007)CrossRefGoogle Scholar
  12. 12.
    P. Chen, C. Holbrook, P. Boolchand, D.G. Georgiev, K.A. Jackson, M. Micoulaut, Intermediate phase, network demixing, boson and floppy modes, and compositional trends in glass transition temperatures of binary AsxS1−x system. Phys. Rev. B 78(22), 224208 (2008)CrossRefGoogle Scholar
  13. 13.
    T. Wagner, S.O. Kasap, Modulated-temperature differential scanning calorimetry and Raman spectroscopy studies of AsxS100−x glasses. J. Mater. Sci. 33(23), 5581–5588 (1998)CrossRefGoogle Scholar
  14. 14.
    R. Frerichs, New optical glasses with good transparency in the infrared. J. Opt. Soc. Am. 43(12), 1153–1157 (1953)CrossRefGoogle Scholar
  15. 15.
    Y. Gonzalez-Velo, H.J. Barnaby, M.N. Kozicki, K. Holbert, Total-ionizing-dose effects on the resistance switching characteristics of chalcogenide programmable metallization cells. IEEE T. Nucl. Sci. 60(6), 4563–4569 (2013)CrossRefGoogle Scholar
  16. 16.
    M. Saremi, A physical-based simulation for the dynamic behavior of photodoping mechanism in chalcogenide materials used in the lateral programmable metallization cells. Solid State Ion. 290, 1–5 (2016)CrossRefGoogle Scholar
  17. 17.
    Z.U. Borisova, Glassy Semiconductors (Springer, New York, 1981)CrossRefGoogle Scholar
  18. 18.
    S. Maruno, M. Noda, T. Yamada, Glass Formation and Thermal Analysis in the System As–S–Ag. J. Ceram. Assoc. Jpn. 81(938), 445–447 (1973)CrossRefGoogle Scholar
  19. 19.
    D.E. Laughlin, W. Soffa, Spinodal structures, in Metals Handbook, 9th edn, vol. 9: Metallography and Microstructures (American Society for Metals, 1985), pp. 652–654Google Scholar
  20. 20.
    I. Kaban, P. Jóvári, T. Wágner, M. Bartoš, M. Frumar, B. Beuneu, W. Hoyer, N. Mattern, J. Eckert, Structural study of AsS2–Ag glasses over a wide concentration range. J. Non-Cryst. Solids 357(19–20), 3430–3434 (2011)CrossRefGoogle Scholar
  21. 21.
    T.D. Mel’nichenko, V.I. Fedelesh, T.N. Mel’nichenko, D.S. Sanditov, S.S. Badmaev, D.G. Damdinov, On the approximate estimation of the surface tension of chalcogenide glass melts. Glass. Phys. Chem. 35(1), 32–42 (2009)CrossRefGoogle Scholar
  22. 22.
    A.J. Kinloch, Adhesion and Adhesives: Science and Technology (Chapman & Hall, New York, 1987)CrossRefGoogle Scholar
  23. 23.
    R. Golovchak, O. Shpotyuk, J. Mccloy, B. Riley, C. Windisch, S. Sundaram, A. Kovalskiy, H. Jain, Structural model of homogeneous As–S glasses derived from Raman spectroscopy and high-resolution XPS. Philos. Mag. 90(34), 4489–4501 (2010)CrossRefGoogle Scholar
  24. 24.
    V. Mastelaro, S. Bénazeth, H. Dexpert, EXAFS Study of Ag–As–Se and Ag–As–S ionic conductor glasses. J. Phys. IV 2(C2), C2-195–C2-200 (1992)Google Scholar
  25. 25.
    V. Mastelaro, S. Bénazeth, H. Dexpert, Comparative EXAFS study of (Ag2X)y(As2X3)1−y glasses (X = Se or S). J. Non-Cryst. Solids 185(3), 274–282 (1995)CrossRefGoogle Scholar
  26. 26.
    D.W. Scott, M.Z. El-Sabban, A valence force field for aliphatic sulfur compounds: dithiaalkanes. J. Mol. Spectrosc. 31(1), 362–367 (1969)CrossRefGoogle Scholar
  27. 27.
    F. Kyriazis, A. Chrissanthopoulos, V. Dracopoulos, M. Krbal, T. Wagner, M. Frumar, S. Yannopoulos, Effect of silver doping on the structure and phase separation of sulfur-rich As–S glasses: Raman and SEM studies. J. Non-Cryst. Solids 355(37–42), 2010–2014 (2009)CrossRefGoogle Scholar
  28. 28.
    A. Steel, G. Greaves, A. Firth, A. Owen, Photodissolution of silver in arsenic sulphide films—an exafs study. J. Non-Cryst. Solids 107, 155–162 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alexandre Douaud
    • 1
    Email author
  • Sandra Helena Messaddeq
    • 1
  • Younès Messaddeq
    • 1
  1. 1.Centre d’Optique, Photonique et LaserUniversité LavalQuebecCanada

Personalised recommendations