Sonochemical synthesis of CuO nanostructures and their morphology dependent optical and visible light driven photocatalytic properties

  • Thangaraj PandiyarajanEmail author
  • Rajendran Saravanan
  • Balasubramanian Karthikeyan
  • F. Gracia
  • Héctor D. Mansilla
  • M. A. Gracia-Pinilla
  • Ramalinga Viswanathan MangalarajaEmail author


A controlled synthesis of CuO nanostructures with various morphologies were successfully achieved by presence/absence of low frequency (42 kHz) ultrasound with two different methods. The size, shape and morphology of the CuO nanostructures were tailored by altering the ultrasound, mode of addition and solvent medium. The crystalline structure and molecular vibrational modes of the prepared nanostructures were analysed through X-ray diffraction and FTIR measurement, respectively which confirmed that the nanostructures were phase pure high-quality CuO with monoclinic crystal structure. The morphological evaluation and elemental composition analysis were done using TEM and EDS attached with SEM, respectively. Furthermore, we demonstrated that the prepared CuO nanostructures could be served as an effective photocatalyst towards the degradation of methyl orange (MO) under visible light irradiation. Among the various nanostructures, the spherical shape CuO nanostructures were found to have the better catalytic activities towards MO dye degradation. The catalytic degradation performance of MO in the presence of CuO nanostructures showed the following order: spherical < nanorod < layered oval < nanoleaf < triangular < shuttles structures. The influence of loading and reusability of catalyst revealed that the efficiency of visible light assisted degradation of MO was effectively enhanced and more than 95 % of degradation was achieved after 3 cycles.


Photocatalytic Activity Methyl Orange Visible Light Irradiation Energy Dispersive Spectrometer Methyl Orange Degradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author gratefully acknowledges the FONDECYT Post-doctoral Project No. 3140178 Government of Chile, Santiago, for the financial assistance.


  1. 1.
    A.S. Edelstein, R.C. Cammaratra, Nanomaterials: Synthesis, Properties and Applications, 2nd edn. (CRC Press, Boca Raton, 1998), p. 616Google Scholar
  2. 2.
    H. Zhong, Z. Bai, B. Zou, J. Phys. Chem. Lett. 3, 3167–3175 (2012)CrossRefGoogle Scholar
  3. 3.
    A. Allagui, T. Salameh, H. Alawadhi, J. Electroanal. Chem. 750, 107–113 (2015)CrossRefGoogle Scholar
  4. 4.
    J.H. Bang, P.V. Kamat, ACS Nano 3, 1467–1476 (2009)CrossRefGoogle Scholar
  5. 5.
    F.G. Banica, Chemical Sensors and Biosensors: Fundamentals and Applications (Wiley, Hoboken, 2012), p. 576CrossRefGoogle Scholar
  6. 6.
    F. Zaera, ChemSusChem 6, 1797–1820 (2013)CrossRefGoogle Scholar
  7. 7.
    Y. Fan, R. Liu, W. Du, Q. Lu, H. Pang, F. Gao, J. Mater. Chem. 22, 12609–12617 (2012)CrossRefGoogle Scholar
  8. 8.
    A.B. Kuzmenko, D. van der Marel, P.J.M. van Bentum, E.A. Tishchenko, C. Presura, A.A. Bush, Phys. Rev. B 63(1–15), 094303 (2001)CrossRefGoogle Scholar
  9. 9.
    G. Chen, J.M. Langlois, Y. Guo, W.A. Goddard, Proc. Natl. Acad. Sci. U.S.A. 86, 3447–3451 (1989)CrossRefGoogle Scholar
  10. 10.
    D.R. Saha, M. Mukherjee, D. Chakravorty, J. Magn. Magn. Mater. 324, 4073–4077 (2012)CrossRefGoogle Scholar
  11. 11.
    M. Muhibbullah, M. Ichimura, Jpn. J. Appl. Phys. 49(1–4), 081102 (2010)CrossRefGoogle Scholar
  12. 12.
    X. Liu, D. Wang, Y. Li, Nano Today 7, 448–466 (2012)CrossRefGoogle Scholar
  13. 13.
    Y. Li, Q. Liu, W. Shen, Dalton Trans. 40, 5811–5826 (2011)CrossRefGoogle Scholar
  14. 14.
    S. Ghosh, M.K. Naskar, RSC Adv. 3, 13728-1 (2013)Google Scholar
  15. 15.
    W. Wang, Q. Zhou, X. Fei, Y. He, P. Zhang, G. Zhang, L. Peng, W. Xie, CrystEngComm 12, 2232–2237 (2010)CrossRefGoogle Scholar
  16. 16.
    M. Outokesh, M. Hosseinpour, S.J. Ahmadi, T. Mousavand, S. Sadjadi, W. Soltanian, Ind. Eng. Chem. Res. 50, 3540–3554 (2011)CrossRefGoogle Scholar
  17. 17.
    C. Yang, F. Xiao, J. Wang, X. Su, J. Colloid Interface Sci. 435, 34–42 (2014)CrossRefGoogle Scholar
  18. 18.
    X.D. Yang, L.L. Jiang, C.J. Maon, H.L. Niu, J.M. Song, S.Y. Zhang, Mater. Lett. 115, 121–124 (2014)CrossRefGoogle Scholar
  19. 19.
    K.M. Shrestha, C.M. Sorensen, K.J. Klabunde, J. Phys. Chem. C 114, 14368–14376 (2010)CrossRefGoogle Scholar
  20. 20.
    X.Z. Lin, P. Liu, J.M. Yu, G.W. Yang, J. Phys. Chem. C 113, 17543–17547 (2009)CrossRefGoogle Scholar
  21. 21.
    S.H. Kima, A. Umar, R. Kumar, A.A. Ibrahima, G. Kumar, Mater. Lett. 156, 138–141 (2015)CrossRefGoogle Scholar
  22. 22.
    X. Xu, D. Xiao, K. Dai, Y. Qub, Y. Yinb, H. Chen, Appl. Surf. Sci. 358, 181–187 (2015)CrossRefGoogle Scholar
  23. 23.
    L. Hu, N. Gao, S. Liu, S. Wageh, A.A. Al-Ghamdi, A. Alshahrie, X. Fang, Adv. Funct. Mater. 25, 445–454 (2015)CrossRefGoogle Scholar
  24. 24.
    C. Lu, C. Liu, R. Chen, X. Fang, K. Xu, D. Meng, J. Mater. Sci.: Mater. Electron. 27, 6947–6954 (2016)Google Scholar
  25. 25.
    H. Liu, N. Gao, M. Liao, X. Fang, Sci. Rep. 5(1–9), 7716 (2015)CrossRefGoogle Scholar
  26. 26.
    M. Villani, A.B. Alabi, N. Coppede, D. Calestani, L. Lazzarini, A. Zappettini, Cryst. Res. Technol. 49, 594–598 (2014)CrossRefGoogle Scholar
  27. 27.
    L. Zheng, S. Han, H. Liu, P. Yu, X. Fang, Small 12, 1527–1536 (2016)CrossRefGoogle Scholar
  28. 28.
    Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, Prog. Mater Sci. 60, 208–337 (2014)CrossRefGoogle Scholar
  29. 29.
    J. Li, F. Sun, K. Gu, T. Wu, W. Zhai, W. Li, S. Huang, Appl. Catal. A 406, 51–58 (2011)CrossRefGoogle Scholar
  30. 30.
    J. Liu, J. Jin, Z. Deng, S.Z. Huang, Z.Y. Hu, L. Wang, C. Wang, L.H. Chen, Y. Li, G.V. Tendeloo, B.L. Su, J. Colloid Interface Sci. 384, 1–9 (2012)CrossRefGoogle Scholar
  31. 31.
    Y. Wang, D. Wang, B. Yan, Y. Chen, C. Song, J. Mater. Sci.: Mater. Electron. 27, 6918–6924 (2016)Google Scholar
  32. 32.
    S.P. Meshram, P.V. Adhyapak, U.P. Mulik, D.P. Amalnerkar, Chem. Eng. J. 204–206, 158–168 (2012)CrossRefGoogle Scholar
  33. 33.
    A.N. Ejhieh, H.Z. Mobarakeh, J. Ind. Eng. Chem. 20, 1421–1431 (2014)CrossRefGoogle Scholar
  34. 34.
    A. Sharma, M. Varshney, J. Park, T.K. Ha, K.H. Chae, H.J. Shin, RSC Adv. 5, 21762–21771 (2015)CrossRefGoogle Scholar
  35. 35.
    A. Sharma, M. Varshney, T.K. Ha, K.H. Chae, H.J. Shin, Curr. Appl. Phys. 15, 1148–1155 (2015)CrossRefGoogle Scholar
  36. 36.
    Y. Chen, X. Tao, Y. Min, F. Zheng, J. Mater. Sci.: Mater. Electron. 24, 1319–1324 (2013)Google Scholar
  37. 37.
    J. Huang, G. Fu, C. Shi, X. Wang, M. Zhai, C. Gu, J. Phys. Chem. Solids 75, 1011–1016 (2014)CrossRefGoogle Scholar
  38. 38.
    C. Suryanarayana, M. Grant Norton, X-ray Diffraction: A Practical Approach (Plenum Press, New York, 1998) pp. 213–221CrossRefGoogle Scholar
  39. 39.
    S. Ayyappan, J. Philip, B. Raj, Mater. Chem. Phys. 115, 712–717 (2009)CrossRefGoogle Scholar
  40. 40.
    X.Y. Chen, H. Cui, P. Liu, G.W. Yang, Appl. Phys. Lett. 90(1–3), 183118 (2007)CrossRefGoogle Scholar
  41. 41.
    G. Kliche, Z.V. Popovic, Phys. Rev. B 42, 10060–10066 (1990)CrossRefGoogle Scholar
  42. 42.
    L. Debbichi, M.C. Marco de Lucas, J.F. Pierson, P. Kruger, J. Phys. Chem. C 116, 10232–10237 (2012)CrossRefGoogle Scholar
  43. 43.
    C. Chen, Y. Zheng, Y. Zhan, X. Lin, Q. Zheng, K. Wei, Cryst. Growth Des. 8, 3549–3554 (2008)CrossRefGoogle Scholar
  44. 44.
    C. Yang, F. Xiao, J. Wang, X. Su, Sens. Actuators, B 207, 177–185 (2015)CrossRefGoogle Scholar
  45. 45.
    L. Pan, X. Liu, Z. Sun, C.Q. Sun, J. Mater. Chem. A 1, 8299–8326 (2013)CrossRefGoogle Scholar
  46. 46.
    S. Sonia, S. Poongodi, P. Suresh Kumar, D. Mangalaraj, N. Ponpandian, C. Viswanathan, Mater. Sci. Semicond. Process. 30, 585–591 (2015)CrossRefGoogle Scholar
  47. 47.
    T. Pandiyarajan, R.V. Mangalaraja, B. Karthikeyan, P. Sathishkumar, H.D. Mansilla, D. Contreras, Jose Ruiz, Appl. Phys. A 119, 487–495 (2015)CrossRefGoogle Scholar
  48. 48.
    V. Ramaswamy, N.B. Jagtap, S. Vijayanand, D.S. Bhange, P.S. Awati, Mater. Res. Bull. 43, 1145–1152 (2008)CrossRefGoogle Scholar
  49. 49.
    H. Wang, C. Xie, W. Zhang, S. Cai, Z. Yang, Y. Gui, J. Hazard. Mater. 141, 645–652 (2007)CrossRefGoogle Scholar
  50. 50.
    R. Saravanan, V.K. Gupta, V. Narayanan, A. Stephen, J. Mol. Liq. 181, 133–141 (2013)CrossRefGoogle Scholar
  51. 51.
    M. Zhu, G. Diao, Catal. Sci. Technol. 2, 82–84 (2012)Google Scholar
  52. 52.
    X. Zhang, Y. Yang, W. Que, Y. Du, RSC Adv. 6, 81607–81613 (2016)CrossRefGoogle Scholar
  53. 53.
    S. Dutta, K. Das, K. Chakrabarti, D. Jana, S.K. De, S. De, J. Phys. D Appl. Phys. 49(1–9), 315107 (2016)CrossRefGoogle Scholar
  54. 54.
    A.N. Ejhieh, M.K. Shamsabadi, Appl. Cataly A 477, 83–92 (2014)CrossRefGoogle Scholar
  55. 55.
    M.M. Hossain, H. Shima, MdA Islam, M. Hasand, M. Lee, RSC Adv. 6, 4170–4182 (2016)CrossRefGoogle Scholar
  56. 56.
    R. Kalyani, K. Gurunathan, J. Mater. Sci.: Mater. Electron. (2016). doi: 10.1007/s10854-016-5160-7 Google Scholar
  57. 57.
    D. Malwal, P. Gopinath, Catal. Sci. Technol. (2016). doi: 10.1039/C6CY00128A Google Scholar
  58. 58.
    W. Wang, L. Wang, H. Shi, Y. Liang, CrystEngComm 14, 5914–5922 (2012)CrossRefGoogle Scholar
  59. 59.
    A. Chithambararaj, N.S. Sanjini, S. Velmathi, A. Chandra Bose, Phys. Chem. Chem. Phys. 15, 14761–14769 (2013)CrossRefGoogle Scholar
  60. 60.
    C.H. Wu, J.M. Chern, Ind. Eng. Chem. Res. 45, 6450–6457 (2006)CrossRefGoogle Scholar
  61. 61.
    C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G. Guo, Energy. Environ Sci. 7, 2831–2867 (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Thangaraj Pandiyarajan
    • 1
    Email author
  • Rajendran Saravanan
    • 2
  • Balasubramanian Karthikeyan
    • 3
  • F. Gracia
    • 2
  • Héctor D. Mansilla
    • 4
  • M. A. Gracia-Pinilla
    • 5
    • 6
  • Ramalinga Viswanathan Mangalaraja
    • 1
    Email author
  1. 1.Advanced Ceramics and Nanotechnology Laboratory, Department of Materials EngineeringUniversity of ConcepcionConcepciónChile
  2. 2.Department of Chemical Engineering and BiotechnologyUniversity of ChileSantiagoChile
  3. 3.Department of PhysicsNational Institute of TechnologyTiruchirappalliIndia
  4. 4.Department of Organic Chemistry, Faculty of Chemical SciencesUniversity of ConcepcionConcepciónChile
  5. 5.Facultad de Ciencias Físico-MatemáticasUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  6. 6.Centro de Investigación en Innovación y Desarrollo en Ingeniería y Tecnología, PIITUniversidad Autónoma de Nuevo LeónApodacaMexico

Personalised recommendations