Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 12, pp 12539–12549 | Cite as

Investigation on the effect of Ti doping on dielectric, impedance and magnetic properties of Ba2+-substituted BiFeO3 ceramics

  • Manpreet Kaur
  • Poonam UniyalEmail author
Article

Abstract

Ti4+ substituted (Bi0.9Ba0.1)(Fe1−yTiy)O3 ceramics (0.0 ≤ y ≤ 0.15) were synthesized by auto combustion method. Rietveld refinement reveals a transformation from rhombohedral to tetragonal with the Ti4+ doping content at y = 0.05. Effect of Ti4+ doping on the dielectric properties of Ba2+ doped BiFeO3 was studied from room temperature to 400 °C in wide range of frequency. Initially, the dielectric loss was found to increase in ceramics with low Ti4+ content and then after decreases with further increase in Ti4+ concentration. The electrical conductivity of Bi0.9Ba0.1Fe1−yTiyO3 ceramics obeys the Arrhenius law, revealing the controlled conduction mechanism of oxygen vacancies at the higher range of temperature. The highest d 33 value of 15.8 pC/N was exhibited by the composition with Ti4+ doping at y = 0.05. Ti4+ doped BBFO ceramics showed similar behavior of weak ferromagnetism as Bi0.9Ba0.1FeO3. Also, magnetization was found to increase with Ti4+ doping content up to 0.05 and then decreases with further increase in doping concentration.

Keywords

BiFeO3 Doping Content Weak Ferromagnetism Magnetoelectric Coupling Bismuth Nitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006). doi: 10.1038/nature05023 CrossRefGoogle Scholar
  2. 2.
    W. Prellier, M.P. Singh, P. Murugavel, J. Phys.: Condens. Matter 17, 803–832 (2005). doi: 10.1088/0953-8984/17/30/R01 Google Scholar
  3. 3.
    R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21–29 (2007). doi: 10.1038/nmat1805 CrossRefGoogle Scholar
  4. 4.
    A. Singh, V. Pandey, R.K. Kotnala, D. Pandey, Phys. Rev. Lett. 101, 247602 (2008). doi: 10.1103/PhysRevLett.101.247602 CrossRefGoogle Scholar
  5. 5.
    Y.L. Han, W.F. Liu, P. Wu, X.L. Xu, M.C. Guo, G.H. Rao, S.Y. Wang, J. Alloys Compd. 661, 115–121 (2015). doi: 10.1016/j.jallcom.2015.11.157 CrossRefGoogle Scholar
  6. 6.
    G. Catalan, J.F. Scott, Adv. Mater. 2, 2463–2485 (2009). doi: 10.1002/adma.200802849 CrossRefGoogle Scholar
  7. 7.
    C. Nayek, A. Tamilselvan, C. Thirmal, P. Murugavel, S. Balakumar, J. Appl. Phys. 115, 073902 (2014). doi: 10.1063/1.4865958 CrossRefGoogle Scholar
  8. 8.
    K.C. Verma, R.K. Kotnala, RSC Adv. 6, 57727 (2016). doi: 10.1039/C6RA12949H CrossRefGoogle Scholar
  9. 9.
    M.A. Basith, O. Kurni, M.S. Alam, B.L. Sinha, B. Ahmmad, J. Appl. Phys. 115, 024102 (2014). doi: 10.1063/1.4861151 CrossRefGoogle Scholar
  10. 10.
    M. Kumar, K.L. Yadav, J. Appl. Phys. 100, 074111 (2006). doi: 10.1063/1.2349491 CrossRefGoogle Scholar
  11. 11.
    Y.H. Gu, Y. Wang, F. Chen, H.L.W. Chan, W.P. Chen, J. Appl. Phys. 108, 094112 (2010). doi: 10.1063/1.3506526 CrossRefGoogle Scholar
  12. 12.
    P. Kumar, C. Panda, M. Kar, Smart Mater. Struct. 24, 045028 (2015). doi: 10.1088/0964-1726/24/4/045028 CrossRefGoogle Scholar
  13. 13.
    G.F. Cheng, Y.J. Ruan, W. Liu, X.S. Wu, Phys. B 468, 81–84 (2015). doi: 10.1016/j.physb.2015.04.023 CrossRefGoogle Scholar
  14. 14.
    H. Deng, M. Zhang, Z. Hu, Q. Xie, Q. Zhong, J. Wei, H. Yan, J. Alloys Compd. 582, 273–276 (2014). doi: 10.1016/j.jallcom.2013.07.187 CrossRefGoogle Scholar
  15. 15.
    R.D. Shannon, Acta Crystallogr. A 32, 751–767 (1976)CrossRefGoogle Scholar
  16. 16.
    P. Debye, Ann. Phys. 351, 809–823 (1915). doi: 10.1002/andp.19153510606 CrossRefGoogle Scholar
  17. 17.
    H. Singh, K.L. Yadav, J. Phys.: Condens. Matter 23, 385901 (2011). doi: 10.1088/0953-8984/23/38/385901 Google Scholar
  18. 18.
    H. Singh, K.L. Yadav, Mater. Chem. Phys. 132, 17–21 (2012). doi: 10.1016/j.matchemphys.2011.08.058 CrossRefGoogle Scholar
  19. 19.
    L. Benguigui, Solid State Commun. 11, 825–828 (1972). doi: 10.1016/0038-1098(72)90280-3 CrossRefGoogle Scholar
  20. 20.
    P.K. Patel, K.L. Yadav, H. Singh, A.K. Yadav, J. Alloy Comp. 591, 224–229 (2014). doi: 10.1016/j.jallcom.2013.12.119 CrossRefGoogle Scholar
  21. 21.
    A.K. Behera, N.K. Mohanty, B. Behera, P. Nayak, Adv. Mat. Lett. 4, 141–145 (2013). doi: 10.5185/amlett.2012.6359 CrossRefGoogle Scholar
  22. 22.
    H. Singh, A. Kumar, K.L. Yadav, Mat. Sci. Eng. B 176, 540–547 (2011). doi: 10.1016/j.mseb.2011.01.010 CrossRefGoogle Scholar
  23. 23.
    M. Kumar, S. Shankar, O. Parkash, O.P. Thakur, J. Mater. Sci.: Mater. Electron. 25, 888–896 (2014). doi: 10.1007/s10854-013-1661-9 Google Scholar
  24. 24.
    Z. Dai, Y. Akishige, J. Phys. D Appl. Phys. 43, 445403 (2010). doi: 10.1088/0022-3727/43/44/445403 CrossRefGoogle Scholar
  25. 25.
    J. Wang, B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719–1722 (2003). doi: 10.1126/science.1080615 CrossRefGoogle Scholar
  26. 26.
    C.W. Bark, S. Ryu, Y.M. Koo, H.M. Jang, H.S. Youn, Appl. Phys. Lett. 90, 022902 (2007). doi: 10.1063/1.2430678 CrossRefGoogle Scholar
  27. 27.
    V.V. Shvartsman, W. Kleemann, R. Haumont, J. Kreisel, Appl. Phys. Lett. 90, 172115 (2007). doi: 10.1063/1.2731312 CrossRefGoogle Scholar
  28. 28.
    T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano Lett. 7, 766–772 (2007). doi: 10.1021/nl063039w CrossRefGoogle Scholar
  29. 29.
    R. Mazumder, P.S. Devi, D. Bhattacharya, P. Choudhury, A. Sen, M. Raja, Appl. Phys. Lett. 91, 062510 (2007). doi: 10.1063/1.2768201 CrossRefGoogle Scholar
  30. 30.
    B. Bhushan, Z. Wang, J.V. Tol, N.S. Dalal, A. Basumallick, N.Y. Vasanthacharya, S. Kumar, D. Das, J. Am. Ceram. Soc. 95, 1985–1992 (2012). doi: 10.1111/j.1551-2916.2012.05132.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Smart Materials Laboratory, School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations