Advertisement

Preparation, characterization, and morphological control of MnWO4 nanoparticles through novel method and its photocatalyst application

  • Mohammad VosoughifarEmail author
Article

Abstract

Manganese tungstate (MnWO4) nanoparticles, has been successfully prepared via a novel method. In this method, manganese salt and Na2WO4·2H2O were applied as starting reagents to fabricate MnWO4 nanoparticles. The effect of different amino acids like valine, glycine and asparagine on the morphology and particle size of the products has been investigated. The as-synthesized nanostructures were characterized by X-ray diffraction, scanning electron microscopy, diffuse reflectance spectroscopy (UV–Vis), and energy dispersive X-ray microanalysis. According to the vibrating sample magnetometer, MnWO4 nanoparticles indicated a paramagnetic behavior at room temperature. To evaluate the catalytic properties of nanocrystalline manganese tungstate, the photocatalytic degradations of methyl orange under ultraviolet light irradiation were carried out.

Keywords

Chemical Oxygen Demand Photocatalytic Activity Photocatalytic Degradation Methyl Orange Energy Dispersive Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Authors are grateful to council of University of Central Tehran for providing financial support to undertake this work.

References

  1. 1.
    S. Khademolhoseini, M. Zakeri, S. Rahnamaeiyan, M. Nasiri, R. Talebi, J. Mater. Sci. Mater. Electron. 26, 7303 (2015)CrossRefGoogle Scholar
  2. 2.
    J. Safari, Z. Zarnegar, J. Nanostruct. 3, 191 (2013)Google Scholar
  3. 3.
    F.S. Ghoreishi, V. Ahmadi, M. Samadpourc, J. Nanostruct. 3, 453 (2013)Google Scholar
  4. 4.
    M. Panahi-Kalamuei, M. Mousavi-Kamazani, M. Salavati-Niasari, J. Nanostruct. 4, 459 (2014)Google Scholar
  5. 5.
    M. Behpour, M. Mehrzad, S.M. Hosseinpour-Mashkani, J. Nanostruct. 5, 183 (2015)Google Scholar
  6. 6.
    F. Beshkar, M. Salavati-Niasari, J. Nanostruct. 5, 17 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Zahraei, A. Monshi, D. Shahbazi-Gahrouei, M. Amirnasr, B. Behdadfar, M. Rostami, J. Nanostruct. 5, 137 (2015)Google Scholar
  8. 8.
    S. Khaleghi, J. Nanostruct. 2, 157 (2012)Google Scholar
  9. 9.
    M. Aliahmad, A. Rahdar, Y. Azizi, J. Nanostruct. 4, 145 (2014)Google Scholar
  10. 10.
    M. Enhessari, M. Kargar-Razi, P. Moarefi, A. Parviz, J. Nanostruct. 2, 119 (2012)Google Scholar
  11. 11.
    Ali Sobhani-Nasab, Mohsen Behpour, J. Mater. Sci. Mater. Electron. 27, 1191 (2016)CrossRefGoogle Scholar
  12. 12.
    M. Maddahfar, M. Ramezani, M. Sadeghi, A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron. 26, 7745 (2015)CrossRefGoogle Scholar
  13. 13.
    M. Nik et al., J. Lumin. 87, 1136 (2000)Google Scholar
  14. 14.
    J. Ruiz-Fuertes et al., Phys. Rev. B 86, 125202 (2012)CrossRefGoogle Scholar
  15. 15.
    J. Ruiz-Fuertes et al., Chem. Mater. 23, 4220 (2011)CrossRefGoogle Scholar
  16. 16.
    J. Ruiz-Fuertes et al., Phys. Rev. B 81, 224115 (2010)CrossRefGoogle Scholar
  17. 17.
    S.M. Pourmortazavi et al., J. Inorg. Organomet. Polym. Mater. 24, 333 (2014)CrossRefGoogle Scholar
  18. 18.
    B. Schwarz et al., Philos. Mag. 88, 1235 (2008)CrossRefGoogle Scholar
  19. 19.
    K.C. Liang et al., New J. Phys. 4, 073028 (2012)CrossRefGoogle Scholar
  20. 20.
    R. Bharati, R. Shanker, R.A. Singh, Pramana 14, 449 (1980)CrossRefGoogle Scholar
  21. 21.
    A. Martınez-Garcıa et al., J. Mater. Chem. A 1, 15235 (2013)CrossRefGoogle Scholar
  22. 22.
    J.E. Yourey et al., J. Phys. Chem. C 117, 8708 (2013)CrossRefGoogle Scholar
  23. 23.
    K.J. Pyper, J.E. Yourey, B.M. Bartlett, J. Phys. Chem. C 117, 24726 (2013)CrossRefGoogle Scholar
  24. 24.
    P.K. Pandey, N.S. Bhave, R.B. Kharat, Mater. Lett. 59, 3149 (2005)CrossRefGoogle Scholar
  25. 25.
    N. Gaillard, Y. Chang, A. DeAngelis, S. Higgins, A. Braun, Int. J. Hydrog. Energy 38, 3166 (2013)CrossRefGoogle Scholar
  26. 26.
    J.E. Yourey, B.M. Bartlett, J. Mater. Chem. 21, 7651 (2011)CrossRefGoogle Scholar
  27. 27.
    J.C. Hill, K.S. Choi, J. Mater. Chem. A 1, 5006 (2013)CrossRefGoogle Scholar
  28. 28.
    S.K. Pilli et al., Phys. Chem. Chem. Phys. 15, 3273 (2013)CrossRefGoogle Scholar
  29. 29.
    K. Vignesh et al., J. Ind. Eng. Chem. 20, 435 (2014)CrossRefGoogle Scholar
  30. 30.
    O.Y. Khyzhun et al., J. Alloys Compd. 389, 14 (2005)CrossRefGoogle Scholar
  31. 31.
    S. Dey et al., Inorg. Chem. 53, 4394 (2014)CrossRefGoogle Scholar
  32. 32.
    B. Lakey et al., J. Phys. Condens. Mater. 8, 8613 (1996)CrossRefGoogle Scholar
  33. 33.
    J.B. Forsytht, C. Wilkinsont, A.I. Zvyagin, J. Phys. Condens. Matter. 3, 8433 (1991)CrossRefGoogle Scholar
  34. 34.
    F. Yu, U. Schanz, E. Schmidbauer, J. Cryst. Growth 132, 606 (1993)CrossRefGoogle Scholar
  35. 35.
    B. Lakey, R.A. Cowleyy, D.A. Tennantz, J. Phys. Condens. Mater. 9, 10951 (1997)CrossRefGoogle Scholar
  36. 36.
    K.S. Suslick, D.J. Flannigan, Annu. Rev. Phys. Chem. 259, 659 (2008)CrossRefGoogle Scholar
  37. 37.
    S.S. Hosseinpour-Mashkani, S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron. 27, 4351 (2016)CrossRefGoogle Scholar
  38. 38.
    R. Talebi, J. Mater. Sci. Mater. Electron. 6, 5665 (2016)CrossRefGoogle Scholar
  39. 39.
    A. Sobhani-Nasab, M. Sadeghi, J. Mater. Sci. Mater. Electron. 27, 7933 (2016)CrossRefGoogle Scholar
  40. 40.
    S. Safaei-Ghomi, M. Zahedi, M. Javid, M.A. Ghasemzadeh, J. Nanostruct. 5, 153 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Young Researchers and Elite Club, Central Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations