Studies of hypro-mellose (HPMC) functionalized ZnS:Mn fluorescent quantum dots

  • Anupriya Jain
  • Anita Jain
  • Sanjay Panwar
  • Rajan Singh
  • Manju Singhal
  • J. K. Sharma
  • Rajeev Ahuja
  • H. C. Jeon
  • T. W. Kang
  • Sunil Kumar
Article
  • 157 Downloads

Abstract

Fluorescent ZnS:Mn quantum dots coated with hypro-mellose (HPMC) were synthesized by using simple and facile chemical precipitation technique in which HPMC acts as a novel organic surfactant to passivate the surface, to tune the optical properties and also to functionalize the surface of quantum dot for a futuristic controlled drug release applications. Morphological and optical characterizations were done to see the effect of HPMC coating on ZnS:Mn quantum dots. Structural and morphological studies was done by using XRD and TEM respectively. XRD studies confirms the pure zinc blende phase for all the samples. TEM studies shows that HPMC is efficiently doing the surface passivation in doped quantum dots. Optical studies were done by using UV–visible, FTIR and time resolved photoluminescence. UV–visible studies shows that quantum confinement effect is more prominent and also tunable in case of HPMC coated manganese doped ZnS quantum dots. FTIR studies confirms the functionalization of HPMC on the surface of doped ZnS quantum dots. Laser induced time resolved photoluminescence studies were also done to see the effect of HPMC on the photoluminescence intensity of doped quantum dots. Time resolved studies clearly shows the much desired luminescence stability of the HPMC coated quantum dots. It is observed that both the structural and optical characteristics have strong dependence on capping concentration. As HPMC is a very important viscoelastic polymer and organic surfactant used in various types of drug formulations, these studies opens a new way in the area of efficient drug delivery, controlled drug release and targeting.

References

  1. 1.
    G. Ghosh, N.M. Kanti, A. Patra, M. Chatterjee, Opt. Mater. 28, 1047 (2006)CrossRefGoogle Scholar
  2. 2.
    S. Kavita, K. Singh, S. Kumar, H.S. Bhatti, J. Lumin. 149, 112 (2014)CrossRefGoogle Scholar
  3. 3.
    Anita Jain, Sanjay Panwar, T.W. Kang, S. Kumar, J. Mater. Sci. Mater. Electron. 24(12), 5147 (2013)CrossRefGoogle Scholar
  4. 4.
    E.K. Hatim Mohamed, X.U. Ling, C.K. Ji, M. Yi, Z. Yu, L.M. Hai, H.X. Fan, Chin. Phys. Lett. 19, 967 (2002)CrossRefGoogle Scholar
  5. 5.
    C. Torres-Martyonez, L. Nguyen, R. Kho, W. Bae, K. Bozhilov, V. Klimov, R.K. Mehra, Nanotechnology 10, 340 (1999)CrossRefGoogle Scholar
  6. 6.
    H. Yang, P.H. Holloway, J. Phys. Chem. B 107, 9705 (2003)CrossRefGoogle Scholar
  7. 7.
    N. Karar, S. Raj, F. Singh, J. Cryst. Growth 268, 585 (2004)CrossRefGoogle Scholar
  8. 8.
    W. Chen, A.G. Joly, J.O. Malam, J.O. Bovin, J. Appl. Phys. 95, 667 (2004)CrossRefGoogle Scholar
  9. 9.
    Y. Li, J. Chen, C. Zhu, L. Wang, D. Zhao, S. Zhao, Y. Wu, Spectrochim. Acta Part A 60, 1719 (2004)CrossRefGoogle Scholar
  10. 10.
    A. Jain, S. Panwar, T.W. Kang, H.C. Jeon, S. Kumar, R.K. Choubey, J. Mater. Sci. Mater. Electron. 25, 1716 (2014)CrossRefGoogle Scholar
  11. 11.
    J.P. Li, Y. Xu, Y. Liu, D. Wu, Y. Sun, China Particuol. 2, 266 (2004)CrossRefGoogle Scholar
  12. 12.
    M. Labrenz, G. Gregory Druschel, T. Thomsen-Ebert, B. Gilbert, A. Susan Welch, M. Kenneth Kemner, A. Graham Logan, E. Roger Summons, G. De Stasio, L. Philip Bond, B. Lai, D. Shelly Kelly, F. Jillian Banfield, Science 290, 1744 (2000)CrossRefGoogle Scholar
  13. 13.
    N. Kumbhojkar, V.V. Nikesh, A. Kshirsagar, J. Appl. Phys. 88, 6260 (2000)CrossRefGoogle Scholar
  14. 14.
    S. Wageh, S.M. Liu, F.T. You, X.R. Xu, J. Lumin. 102, 768 (2003)CrossRefGoogle Scholar
  15. 15.
    H.C. Warad, S.C. Ghosh, B. Hemtanon, C. Thanachayanont, J. Dutta, J. Sci. Technol. Adv. Mater. 6, 296 (2005)CrossRefGoogle Scholar
  16. 16.
    D. Kim, K.D. Min, J. Lee, J.H. Park, J.H. Chun, Mater. Sci. Eng. B. 131, 13 (2006)CrossRefGoogle Scholar
  17. 17.
    M. Sharma, S. Kumar, O.P. Pandey, Nanopart Res 12, 2655 (2010)CrossRefGoogle Scholar
  18. 18.
    H.S. Bhatti, S. Kumar, K. Singh, S. Kavita, J. Mater. Sci. 48(6), 5536 (2013)CrossRefGoogle Scholar
  19. 19.
    H.C. Jeon, T.W. Kang, A. Jain, S. Panwar, S. Bala, S. Kamboj, S. Kumar, J. Mater. Sci. Mater. Electron. 26, 5980–5986 (2015)CrossRefGoogle Scholar
  20. 20.
    P. Yousaf Khan, M. Singhal, J.K. Sharma, C.H. Lu, S. Kumar, Nonlinear Quantum Opt. 42, 51 (2010)Google Scholar
  21. 21.
    M. Singhal, J.K. Sharma, S. Kumar, J. Mater. Sci. Mater. Electron. 23, 1392 (2012)CrossRefGoogle Scholar
  22. 22.
    S. Kumar, M. Singhal, J.K. Sharma, J. Mater. Sci. Mater. Electron. 24, 3875 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anupriya Jain
    • 1
  • Anita Jain
    • 1
  • Sanjay Panwar
    • 1
  • Rajan Singh
    • 1
  • Manju Singhal
    • 1
  • J. K. Sharma
    • 1
  • Rajeev Ahuja
    • 2
  • H. C. Jeon
    • 3
  • T. W. Kang
    • 3
  • Sunil Kumar
    • 3
  1. 1.Department of PhysicsMaharishi Markandeshwar University, MullanaAmbalaIndia
  2. 2.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  3. 3.Nano Information Technology AcademyDongguk UniversitySeoulSouth Korea

Personalised recommendations