Effects of NiNb2O6 doping on dielectric property, microstructure and energy storage behavior of Sr0.97La0.02TiO3 ceramics

  • Z. C. Li
  • G. H. ChenEmail author
  • C. L. Yuan
  • C. R. Zhou
  • T. Yang
  • Y. Yang


Sr0.97La0.02TiO3 ceramics with samll amounts of NiNb2O6 additives were prepared by the traditional solid state sintering method, and the phase purity, microstructure, dielectric properties and energy storage behavior of the NiNb2O6-added Sr0.97La0.02TiO3 ceramics were investigated. The results show that the grain size of the ceramics firstly decreases and then increases with increasing NiNb2O6 concentration. The average grain size reaches 0.55 um for the sample with 4.5 wt% NiNb2O6. Moreover, impedance spectroscopy (IS) analysis was employed to study the electrical conductive behavior of NiNb2O6-doped Sr0.97La0.02TiO3 ceramics. IS results reveale that the NiNb2O6-doped Sr0.97La0.02TiO3 ceramic has large R gb /(R gb  + R g ) ratios due to the decreased grain sizes. The breakdown strength is notably improved, and the highest breakdown strength of 324 kV/cm can be achieved for the sample with 4.5 wt% NiNb2O6 additive. The Sr0.97La0.02TiO3 sample with 4.5 wt% NiNb2O6 possesses the maximum theoretical energy density of 1.36 J/cm3, which is about 2 times higher than that of pure SrTiO3 in the literature. And its energy storage efficiency reaches 91.4 % under applied electric field of 80 kV/cm. This study provides the NiNb2O6 added ceramic as an attractive candidate for making high-energy density capacitors.


Weibull Distribution Weibull Modulus Breakdown Strength Dielectric Breakdown TiO3 Ceramic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by National Natural Science Foundation of China (NSFC No. 51162002), Science and Technology Project of Guangxi Returned Personnel (Contract No. 2012-250) and the Research funds of The Guangxi Key Laboratory of Information Materials (Project No. 151011-Z).


  1. 1.
    Z.Y. Shen, Q.G. Hu, Y.M. Li, Z.M. Wang, W.Q. Luo, Y. Hong, Z.X. Xie, R.H. Liao, J. Am. Ceram. Soc. 96, 2551 (2013)CrossRefGoogle Scholar
  2. 2.
    Y. Ye, S.C. Zhang, F. Dogan, E. Schamiloglu, J. Gaudet, P. Castro, M. Roybal, M. Joler, C. Christodoulou, PPC-2003: 14th IEEE international pulsed power conference. 1, 719 (2003).Google Scholar
  3. 3.
    G. Dong, S. Ma, J. Du, J. Cui, Ceram. Int. 35, 2069 (2009)CrossRefGoogle Scholar
  4. 4.
    G.F. Zhang, H. Liu, Z. Yao, M. Cao, H. Hao, J. Mater. Sci. Mater. Electron 26, 2726 (2015)CrossRefGoogle Scholar
  5. 5.
    A.D. Hilton, B.W. Ricketts, J. Phys. D Appl. Phys. 29, 1321 (1996)CrossRefGoogle Scholar
  6. 6.
    G. Triani, A.D. Hilton, B.W. Ricketts, J. Mater. Sci:Mater. Electron. 12, 17 (2001)Google Scholar
  7. 7.
    R.P. Wang, Y. Inaguma, M. Itoh, Mater. Res. Bull. 36, 1693 (2001)CrossRefGoogle Scholar
  8. 8.
    Z.Y. Shen, Y.M. Li, W.Q. Luo, Z.M. Wang, X.Y. Gu, R.H. Liao, J. Mater. Sci. Mater. Electron. 24, 704 (2013)CrossRefGoogle Scholar
  9. 9.
    Q.G. Hu, Z.Y. Shen, Y.M. Li, Z.M. Wang, W.Q. Luo, Z.X. Xie, Ceram. Int. 40, 2529 (2014)CrossRefGoogle Scholar
  10. 10.
    G. Zhao, Y. Li, H. Liu, J. Xu, H. Hao, M. Cao, Z. Yu, J. Chem. Res. 13, 310 (2012)Google Scholar
  11. 11.
    Z. Wang, M. Cao, Z. Yao, Z. Song, G. Li, W. Hu, H. Hao, H. Liu, Ceram. Int. 40, 14127 (2014)CrossRefGoogle Scholar
  12. 12.
    L. Li, X. Yu, H. Cai, Q. Liao, Y. Han, Z. Gao, Mater. Sci. Eng. B 178, 1509 (2013)CrossRefGoogle Scholar
  13. 13.
    J. Zheng, G.H. Chen, X. Chen, Q.N. Li, J.W. Xu, C.L. Yuan, C.R. Zhou, J. Mater. Sci. Mater. Electron 27, 3759 (2016)CrossRefGoogle Scholar
  14. 14.
    S. Chao, F. Dogan, Mater. Lett. 65, 978 (2011)CrossRefGoogle Scholar
  15. 15.
    Y. Zhang, J. Huang, T. Ma, X. Wang, C. Deng, X. Dai, J. Am. Ceram. Soc. 94, 1805 (2011)CrossRefGoogle Scholar
  16. 16.
    X. Wang, Y. Zhang, X. Song, Z. Yuan, T. Ma, Q. Zhang, C. Deng, T. Liang, J. Eur. Ceram. Soc. 32, 559 (2012)CrossRefGoogle Scholar
  17. 17.
    L. Hyo Jong, K. In Tae, H. Kug Sun, Jpn. J. Appl. Phys. 36, L1318 (1997)CrossRefGoogle Scholar
  18. 18.
    R.D. Shannon, Acta Cryst. 32, 751 (1976)CrossRefGoogle Scholar
  19. 19.
    C. Karthik, K.B.R. Varma, Mater. Sci. Eng. B 129, 245 (2006)CrossRefGoogle Scholar
  20. 20.
    P.K. Patro, A.R. Kulkarni, C.S. Harendranath, Mater. Res. Bull. 38, 249 (2003)CrossRefGoogle Scholar
  21. 21.
    C. Dervos, Mater. Lett. 58, 1502 (2004)CrossRefGoogle Scholar
  22. 22.
    Y. Xia, Z. Liu, Y. Wang, L. Shi, L. Chen, J. Yin, X. Meng, Appl. Phys. Lett. 91, 102904 (2007)CrossRefGoogle Scholar
  23. 23.
    S.H. Yoon, C.A. Randall, K.H. Hur, J. Appl. Phys. 107, 103721 (2010)CrossRefGoogle Scholar
  24. 24.
    S.H. Yoon, C.A. Randall, K.H. Hur, J. Am. Ceram. Soc. 92, 1758 (2009)CrossRefGoogle Scholar
  25. 25.
    A.L. Young, G.E. Hilmas, S.C. Zhang, R.W. Schwartz, J. Mater. Sci. 42, 5613 (2007)CrossRefGoogle Scholar
  26. 26.
    J. Huang, Y. Zhang, T. Ma, H. Li, L. Zhang, Appl. Phys. Lett. 96, 042902 (2010)CrossRefGoogle Scholar
  27. 27.
    Q. Zhang, Y. Zhang, X. Wang, T. Ma, Z. Yuan, Ceram. Int. 38, 4765 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Z. C. Li
    • 1
  • G. H. Chen
    • 1
    Email author
  • C. L. Yuan
    • 1
  • C. R. Zhou
    • 1
  • T. Yang
    • 1
  • Y. Yang
    • 1
  1. 1.College of Materials Science and Engineering, Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations