One-pot synthesis of urchin-like ZnO nanostructure and its enhanced acetone gas sensing properties

  • Weiwei Guo


A hierarchical urchin-like ZnO nanostructure was successfully synthesized via a facile and efficient hydrothermal method. The sample was characterized by XRD, FESEM, TEM, BET, UV–Vis DRS and Photoluminescence (PL) techniques. The urchin-like ZnO is assembled by many nanorods and has the average size of 1.5 μm. The BET surface and pore volume of urchin-like ZnO were measured to be 53.9 m2 g−1 and 0.073 cm3 g−1. The hydrothermal time and pH value have important effect on the morphology. UV–Vis spectra show that a narrower band gap for the urchin-like ZnO as compared to commercial ZnO. PL spectra indicate that the urchin like ZnO has the higher donors and fewer acceptors than that of commercial ZnO. Furthermore, the urchin-like ZnO nanostructure exhibited excellent gas sensing properties towards acetone, indicating that the as-prepared urchin-like ZnO is a promising material for gas sensors.


Hydrothermal Time Metal Oxide Semiconductor Sensor Unique Hierarchical Structure Acetone Sensor High Magnification Field Emission Scanning Electron Microscopy Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial supports were provided by the National Science Foundation of China (NSFC) (Grants 61604025), Chongqing Science and Technology Commission (Project No. cstc2015jcyjA50028), Chongqing Education Commission (Project No. KJ1500611), Chongqing Technology and Business University (Project No. 670101052 and 2014-56-09).


  1. 1.
    M.M. Ayad, G.E. Hefnawey, N.L. Torad, A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance. J. Hazard. Mater. 168, 85–88 (2009)CrossRefGoogle Scholar
  2. 2.
    S.J. Choi, I. Lee, B.H. Jang, D.Y. Youn, W.H. Ryu, C.O. Park, I.D. Kim, Selective diagnosis of diabetes using Pt-functionalized WO3 hemitube networks as a sensing layer of acetone in exhaled breath. Anal. Chem. 85, 1792–1796 (2013)CrossRefGoogle Scholar
  3. 3.
    P. Sun, Y.X. Cai, S.S. Du, X.M. Xu, L. You, J. Ma, F.M. Liu, X.S. Liang, Y.F. Sun, G.Y. Lu, Hierarchical α-Fe2O3/SnO2 semiconductor composites: hydrothermal synthesis and gas sensing properties. Sens. Actuators B Chem. 182, 336–343 (2013)CrossRefGoogle Scholar
  4. 4.
    M. Righettoni, A. Tricoli, S.E. Pratsinis, Si:WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal. Chem. 82, 3581–3587 (2010)CrossRefGoogle Scholar
  5. 5.
    T.I. Nasution, I. Nainggolan, S.D. Hutagalung, K.R. Ahmad, Z.A. Ahmad, The sensing mechanism and detection of low concentration acetone using chitosan-based sensors. Sens. Actuators B Chem. 177, 522–528 (2013)CrossRefGoogle Scholar
  6. 6.
    T. Xiao, X.Y. Wang, Z.H. Zhao, L. Li, L. Zhang, H.C. Yao, J.S. Wang, Z.J. Li, Highly sensitive and selective acetone sensor based on C-doped WO3 for potential diagnosis of diabetes mellitus. Sens. Actuators B Chem. 199, 210–219 (2014)CrossRefGoogle Scholar
  7. 7.
    P. Rai, Y.S. Kim, H.M. Song, Y.T. Yu, The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases. Sens. Actuators B Chem. 165, 133–142 (2012)CrossRefGoogle Scholar
  8. 8.
    P. Rai, Y.T. Yu, Synthesis of floral assembly with single crystalline ZnO nanorods and its CO sensing property. Sens. Actuators B Chem. 161, 748–754 (2012)CrossRefGoogle Scholar
  9. 9.
    P. Rai, Y.T. Yu, Citrate-assisted hydrothermal synthesis of single crystalline ZnO nanoparticles for gas sensor application. Sens. Actuators B Chem. 173, 58–65 (2012)CrossRefGoogle Scholar
  10. 10.
    P. Rai, S. Raj, K. Ko, K. Park, Y. Yu, Synthesis of flower-like ZnO microstructures for gas sensor applications. Sens. Actuators B Chem. 178, 107–112 (2013)CrossRefGoogle Scholar
  11. 11.
    S. Bai, L. Chen, D. Li, W. Yang, P. Yang, Z. Liu, A. Chen, C.L. Chung, Different morphologies of ZnO nanorods and their sensing property. Sens. Actuators B Chem. 146, 129–137 (2010)CrossRefGoogle Scholar
  12. 12.
    J. Elias, J. Michler, L. Philippe, M. Lin, C. Couteau, G. Lerondel, ZnO nanowires, nanotubes, and complex hierarchical structures obtained by electrochemical deposition. J. Mater. Sci. Electron. 40, 728–732 (2011)CrossRefGoogle Scholar
  13. 13.
    L. Yang, Y. Zhou, J. Lu, C. Li, Y. Liu, Y. Wu, M. Li, Controllable preparation of 2D and 3D ZnO micro-nanostructures and their photoelectric conversion efficiency. J. Mater. Sci. Electron. 27, 1693–1699 (2016)CrossRefGoogle Scholar
  14. 14.
    Y. Sun, Z. Wei, W. Zhang, P. Li, K. Lian, J. Hu, Synthesis of brush-like ZnO nanowires and their enhanced gas-sensing properties. J. Mater. Sci. Electron. 51, 1428–1436 (2015)CrossRefGoogle Scholar
  15. 15.
    M.R. Alenezi, S.J. Henley, N.G. Emerson, S.R.P. Silva, From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale 6, 235–247 (2014)CrossRefGoogle Scholar
  16. 16.
    I. Herman, J. Yeo, S. Hong, D. Lee, K.H. Nam, J.H. Choi, W.H. Hong, D. Lee, C.P. Grigoropoulos, S.H. Ko, Hierarchical weeping willow nano-tree growth and effect of branching on dye-sensitized solar cell efficiency. Nanotechnology 23, 194005 (2012)CrossRefGoogle Scholar
  17. 17.
    S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 11, 666–671 (2011)CrossRefGoogle Scholar
  18. 18.
    W.W. Guo, Hollow and porous ZnSnO3 gas sensor for ethanol gas detection. J. Electrochem. Soc. 163(5), B131–B139 (2016)CrossRefGoogle Scholar
  19. 19.
    J.H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens. Actuators B Chem. 140, 319–336 (2009)CrossRefGoogle Scholar
  20. 20.
    J. Liu, Z.Y. Hub, Y. Peng, H.W. Huang, Y. Lia, M. Wu, X.X. Ke, G. van Tendeloo, B.L. Su, 2D ZnO mesoporous single-crystal nanosheets with exposed 0001 polar facets for the depollution of cationic dye molecules by highly selective adsorption and photocatalytic decomposition. Appl. Catal. B 181, 138–145 (2016)CrossRefGoogle Scholar
  21. 21.
    Y.J. Sun, Z.W. Zhao, F. Dong, W. Zhang, Mechanism of visible light photocatalytic NOx oxidation with plasmonic Bi cocatalyst-enhanced (BiO)2CO3 hierarchical microspheres. Phys. Chem. Chem. Phys. 17, 10383–10390 (2015)CrossRefGoogle Scholar
  22. 22.
    L.X. Zhang, J.H. Zhao, H.Q. Lu, L.M. Gong, L. Li, J.F. Zheng, H. Li, Z.P. Zhu, High sensitive and selective formaldehyde sensors based on nanoparticle-assembled ZnO micro-octahedrons synthesized by homogeneous precipitation method. Sens. Actuators B Chem. 160, 364–370 (2011)CrossRefGoogle Scholar
  23. 23.
    H.C. Qin, W.Y. Li, Y.J. Xia, T. He, photocatalytic activity of heterostructures based on ZnO and N-doped ZnO. ACS Appl. Mater. Interfaces 3, 3152–3156 (2011)CrossRefGoogle Scholar
  24. 24.
    Y.H. Shi, M.Q. Wang, C. Hong, Z. Yang, J.P. Deng, X.H. Song, L.L. Wang, J.Y. Shao, H.Z. Liu, Y.C. Ding, Multi-junction joints network self-assembled with converging ZnO Nanowires as multi-barrier gas sensor. Sens. Actuators B Chem. 177, 1027–1034 (2013)CrossRefGoogle Scholar
  25. 25.
    N. Han, X.F. Wu, L.Y. Chai, H.D. Liu, Y.F. Chen, Counterintuitive sensing mechanism of ZnO nanoparticle based gas sensors. Sens. Actuators B Chem. 150, 230–238 (2010)CrossRefGoogle Scholar
  26. 26.
    S.L. Bai, T. Guo, Y.B. Zhao, J.H. Sun, D.Q. Li, A.F. Chen, C.C. Liu, Sensing performance and mechanism of Fe-doped ZnO microflowers. Sens. Actuators B Chem. 195, 657–666 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Chen, Z.H. Wang, D.M. Han, F.B. Gu, G.S. Guo, Porous ZnO polygonal nanoflakes: synthesis, use in high-sensitivity NO2 gas sensor, and proposed mechanism of gas sensing. J. Phys. Chem. C 115, 12763–12773 (2011)CrossRefGoogle Scholar
  28. 28.
    K. Ananda, O. Singh, M.P. Singh, J. Kaur, R.C. Singh, Hydrogen sensor based on graphene/ZnO nanocomposite. Sens. Actuators B Chem. 195, 409–415 (2014)CrossRefGoogle Scholar
  29. 29.
    W.W. Guo, T.M. Liu, J.X. Wang, W.J. Yu, R. Sun, Y. Chen, S. Hussai, X.H. Peng, Z.C. Wang, Hierarchical ZnO porous microspheres and their gas-sensing properties. Ceram. Int. 39, 5919–5924 (2013)CrossRefGoogle Scholar
  30. 30.
    S.Z. Deng, V. Tjoa, H.M. Fan, H.R. Tan, D. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, C.H. Sow, Reduced grapheme oxide conjugated Cu2O nanowire meso-crystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 134, 4905–4917 (2012)CrossRefGoogle Scholar
  31. 31.
    F. Vietmeyer, B. Seger, P.V. Kamat, Anchoring ZnO particles on functionalized single wall carbon nanotubes. Excited state interactions and charge collection. Adv. Mater. 19, 2935–2940 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and ResourcesChongqing Technology and Business UniversityChongqingChina

Personalised recommendations