Advertisement

Effect of Bi2O3 doping on microstructure and electrical properties of ZnO–V2O5–Mn3O4 semiconducting ceramics

  • Choon-W. NahmEmail author
Article

Abstract

In this study, the effect of Bi2O3 doping on microstructure and electrical properties of ZnO–V2O5–Mn3O4 semiconducting ceramics was investigated through the sintering temperature as low as 825 °C. Analysis of the microstructure revealed that ZnO–V2O5–Mn3O4–Bi2O3 ceramics consisted of major ZnO grain, and minor such as Zn3(VO4)2, ZnV2O4, VO2, and BiVO4. As the amount of Bi2O3 increased, the densities of sintered pellets increased from 5.55 to 5.46 g/cm3, and the average grain size decreased from 5.6 to 3.9 μm until the amount of Bi2O3 reaches 0.05 mol%. The breakdown field increased from 4835 to 10,317 V/cm until the amount of Bi2O3 reaches 0.025 mol%. The highest nonlinear coefficient was obtained at the ceramics doped with 0.025 mol%, reaching 46.6. The dielectric constant decreased from 1324.5 to 544.7, and dissipation factor decreased from 0.506 to 0.176, until the amount of Bi2O3 reaches 0.05 mol%.

Keywords

Mn3O4 V2O5 Bi2O3 BiVO4 Leakage Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L.M. Levinson, H.R. Philipp, Am. Ceram. Soc. Bull. 65, 639 (1986)Google Scholar
  2. 2.
    T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990)CrossRefGoogle Scholar
  3. 3.
    L.M. Levinson, H.R. Philipp, J. Appl. Phys. 46, 1332 (1975)CrossRefGoogle Scholar
  4. 4.
    K. Mukae, K. Tsuda, S. Shiga, IEEE Trans. Power Deliv. 3, 591 (1988)CrossRefGoogle Scholar
  5. 5.
    C.-W. Nahm, Mater. Lett. 47, 182 (2001)CrossRefGoogle Scholar
  6. 6.
    C.-W. Nahm, J. Mater. Sci. Lett. 21, 201 (2002)CrossRefGoogle Scholar
  7. 7.
    J.-K. Tsai, T.-B. Wu, J. Appl. Phys. 76, 4817 (1994)CrossRefGoogle Scholar
  8. 8.
    J.-K. Tsai, T.-B. Wu, Mater. Lett. 26, 199 (1996)CrossRefGoogle Scholar
  9. 9.
    C.T. Kuo, C.S. Chen, I.-N. Lin, J. Am. Ceram. Soc. 81, 2942 (1998)CrossRefGoogle Scholar
  10. 10.
    H.H. Hng, K.Y. Tse, Ceram. Int. 34, 1153 (2008)CrossRefGoogle Scholar
  11. 11.
    H.H. Hng, P.L. Chan, Ceram. Int. 35, 409 (2009)CrossRefGoogle Scholar
  12. 12.
    H.-H. Hng, P.-L. Chan, Mater. Chem. Phys. 75, 61 (2002)CrossRefGoogle Scholar
  13. 13.
    C.-S. Chen, J. Mater. Sci. 38, 1033 (2003)CrossRefGoogle Scholar
  14. 14.
    H.H. Hng, P.L. Chan, Ceram. Int. 30, 1647 (2004)CrossRefGoogle Scholar
  15. 15.
    C.-W. Nahm, J. Mater. Sci. 42, 8370 (2007)CrossRefGoogle Scholar
  16. 16.
    M. Zhao, X.C. Liu, W.M. Wang, F. Gao, C.S. Tian, Ceram. Int. 34, 1425 (2008)CrossRefGoogle Scholar
  17. 17.
    C.-W. Nahm, Ceram. Int. 35, 541 (2009)CrossRefGoogle Scholar
  18. 18.
    C.-W. Nahm, J. Mater. Sci. Mater. Electron. 19, 1023 (2008)CrossRefGoogle Scholar
  19. 19.
    C.-W. Nahm, Ceram. Int. 35, 3435 (2009)CrossRefGoogle Scholar
  20. 20.
    C.-W. Nahm, J. Mater. Sci. Mater. Electron. 22, 1010 (2011)CrossRefGoogle Scholar
  21. 21.
    C.-W. Nahm, Ceram. Int. 38, 5281 (2012)CrossRefGoogle Scholar
  22. 22.
    J.C. Wurst, J.A. Nelson, J. Am. Ceram. Soc. 55, 109 (1972)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Semiconductor Ceramics Laboratory, Department of Electrical EngineeringDongeui UniversityBusanSouth Korea

Personalised recommendations