Advertisement

Enhanced energy storage density performance in (Pb0.97La0.02)(Zr0.5Sn0.44Ti0.06)–BiYO3 anti-ferroelectric composite ceramics

  • Hao Yu
  • Jihua ZhangEmail author
  • Meng Wei
  • Jiapeng Huang
  • Hongwei Chen
  • Chuanren Yang
Article

Abstract

(1 − x)(Pb0.97La0.02)(Zr0.5Sn0.44Ti0.06)–xBiYO3 ((1 − x)PLZST–xBYO), with x = 0.0–0.5, have been fabricated by the conventional solid-state reaction process. The phase evolution, microstructure, dielectric and energy storage properties have been investigated in detail. According to the XRD study, a secondary phase was found at room-temperature. The secondary phase was gradually increased with increasing x. The microstructure further revealed that the BYO doping leads to an increase in secondary phase. The EDS analysis revealed that Bi ions and Y ions are mainly substituted for A-site in the perovskite structure. As a result, the maximum value of energy storage density is 0.8 J/cm3, which is 2.66 times as high as that of pure PLZST ceramics.

Keywords

Dielectric Loss Secondary Phase Energy Storage Density Saturation Polarization Energy Storage Capacitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is supported by the Innovation Foundation of Collaboration Innovation Center of Electronic Materials and Devices (No. ICEM2015-4002).

References

  1. 1.
    L. Zhang, S. Jiang, Y. Zeng, M. Fu, K. Han, Q. Li et al., Y doping and grain size co-effects on the electrical energy storage performance of (Pb0.87Ba0.1La0.02) (Zr0.65Sn0.3Ti0.05)O3 anti-ferroelectric ceramics. Ceram. Int. 40(4), 5455–5460 (2014)CrossRefGoogle Scholar
  2. 2.
    L. Zhang, S. Jiang, B. Fan, G. Zhang, High energy storage performance in (Pb0.858Ba0.1La0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3–(Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3 anti-ferroelectric composite ceramics. Ceram. Int. 41(1), 1139–1144 (2015)CrossRefGoogle Scholar
  3. 3.
    R. Xu, Z. Xu, Y. Feng, J. Tian, D. Huang, Energy storage and release properties of Sr-doped (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics. Ceram. Int. 42(11), 12875–12879 (2016)CrossRefGoogle Scholar
  4. 4.
    Q. Zhang, X. Liu, Y. Zhang, X. Song, J. Zhu, I. Baturin et al., Effect of barium content on dielectric and energy storage properties of (Pb, La, Ba)(Zr, Sn, Ti)O3 ceramics. Ceram. Int. 41(2), 3030–3035 (2015)CrossRefGoogle Scholar
  5. 5.
    J. Wang, T. Yang, S. Chen, G. Li, High energy storage density performance of Ba, Sr-modified lead lanthanum zirconate titanate stannate antiferroelectric ceramics. Mater. Res. Bull. 48(10), 3847–3849 (2013)CrossRefGoogle Scholar
  6. 6.
    X. Wang, J. Shen, T. Yang, Y. Dong, Y. Liu, High energy-storage performance and dielectric properties of antiferroelectric (Pb0.97La0.02) (Zr0.5Sn0.5−xTix)O3 ceramic. J. Alloy. Compd. 655, 309–313 (2016)CrossRefGoogle Scholar
  7. 7.
    L. Zhang, S. Jiang, B. Fan, G. Zhang, Enhanced energy storage performance in (Pb0.858Ba0.1La0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3-(Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3 anti-ferroelectric composite ceramics by Spark Plasma Sintering. J. Alloys Compd. 622, 162–165 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Xu, H. Guo, X. Liu, Y. Feng, X. Tan, D. Johnson, Effect of Ba Content on the stress sensitivity of the antiferroelectric to ferroelectric phase transition in (Pb, La, Ba,)(Zr, Sn, Ti)O3Ceramics. J. Am. Ceram. Soc. 97(1), 206–212 (2014)CrossRefGoogle Scholar
  9. 9.
    Q. Tan, Z. Xu, D. Viehland, Effect of substituents with different valences on antiferroelectric stability of antiferroelectric lead zirconate ceramics. Mater. Res. Bull. 14(11), 4251–4258 (1999)CrossRefGoogle Scholar
  10. 10.
    G. Schileo, L. Luisman, A. Feteira, M. Deluca, K. Reichmann, Structure-property relationships in BaTiO3–BiFeO3–BiYbO3 ceramics. J. Eur. Ceram. Soc. 33(8), 1457–1468 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Chotsawat, K. Sarasamak, P. Thanomngam, S. Limpijumnong, J. T-Thienprasert, First-principles study of Bi and Al in orthorhombic PbZrO3. Comput. Mater. Sci. 115, 99–103 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Ogihara, C.A. Randall, S. Trolier-McKinstry, High-energy density capacitors utilizing 0.7 BaTiO3–0.3 BiScO3 ceramics. Am. Ceram. Soc. 92(8), 1719–1724 (2009)CrossRefGoogle Scholar
  13. 13.
    Y. Wang, Y. Pu, H. Zheng, Q. Jin, Z. Gao, Enhanced dielectric relaxation in (1 − x)BaTiO3–xBiYO3 ceramics. Mater. Lett. 181, 358–361 (2016)CrossRefGoogle Scholar
  14. 14.
    N. Vittayakorn, B. Boonchom, Effect of BiAlO3 modification on the stability of antiferroelectric phase in PbZrO3 ceramics prepared by conventional solid state reaction. J. Alloys Compd. 509(5), 2304–2310 (2011)CrossRefGoogle Scholar
  15. 15.
    J.-K. Yan, K.-Y. Kang, J.-H. Du, G.-Y. Gan, J.-H. Yi, Grain boundary segregation and secondary-phase transition of (La, Nb)-codoped TiO2 ceramic. Ceram. Int. 42(10), 11584–11592 (2016)CrossRefGoogle Scholar
  16. 16.
    H. Wu, Y. Pu, J. Wei, Q. Yuan, Effect of Bi2O3 and Y2O3 doping methods on electrical properties and PTCR behavior of Ba0.95Ca0.05TiO3 ceramics. J. Mater. Sci. Mater. Electron. 23(3), 766–771 (2011)CrossRefGoogle Scholar
  17. 17.
    M.Y. Tan, K.B. Tan, Z. Zainal, C.C. Khaw, S.K. Chen, Subsolidus formation and impedance spectroscopy studies of materials in the (Bi2O3)1 − x (Y2O3)x binary system. Ceram. Int. 38(4), 3403–3409 (2012)CrossRefGoogle Scholar
  18. 18.
    M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, 1977)Google Scholar
  19. 19.
    S. Chen, T. Yang, J. Wang, X. Yao, Effects of glass additions on the dielectric properties and energy storage performance of Pb0.97La0.02(Zr0.56Sn0.35Ti0.09)O3 antiferroelectric ceramics. J. Mater. Sci. Mater. Electron. 24(12), 4764–4768 (2013)CrossRefGoogle Scholar
  20. 20.
    Y. Zhang, J. Huang, T. Ma, X. Wang, C. Deng, X. Dai, Sintering temperature dependence of energy-storage properties in (Ba, Sr)TiO3 glass–ceramics. J. Am. Ceram. Soc. 94(6), 1805–1810 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hao Yu
    • 1
    • 2
  • Jihua Zhang
    • 1
    • 2
    Email author
  • Meng Wei
    • 1
    • 2
  • Jiapeng Huang
    • 1
    • 2
  • Hongwei Chen
    • 1
    • 2
  • Chuanren Yang
    • 1
    • 2
  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Collaboration Innovation Center of Electric Materials and DevicesUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations