Sintering temperature dependence of dielectric properties and energy-storage properties in (Ba,Zr)TiO3 ceramics

  • Yan Zhang
  • Yaoyao Li
  • Haikui Zhu
  • Zhenxiao Fu
  • Qitu ZhangEmail author


BaZr0.1Ti0.9O3 ceramics are prepared via the conventional solid state reaction method. The Zr4+ ions have diffused into the BaTiO3 lattices to form a homogenous solid solution. We investigate the dielectric properties and energy storage density of BaZr0.1Ti0.9O3 ceramics at different sintering temperature. The temperature dependence of dielectric constant of BaZr0.1Ti0.9O3 ceramics illustrates the obvious relaxor phase transition characteristics. The polarization hysteresis loops P–E of ceramics sintered at 1260–1300 °C show slimmer comparable to that of ceramics sintered at 1240 °C, resulting in high energy storage density. Excellent dielectric properties and energy storage density are achieved in the BaZr0.1Ti0.9O3 ceramics sintered at 1260 °C for 2 h: εr = 2998, tanδ = 0.007 and J = 0.5 J cm−3.


BaTiO3 Sinter Temperature Barium Titanate Breakdown Strength Conventional Solid State Reaction Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (Project No. SKL201309SIC), as well as Science and Technology Projects of Guangdong Province (Project No. 2011A091103002). This work is partly supported by National Natural Science Foundation of China (51502132).


  1. 1.
    N.H. Fletcher, A.D. Hilton, B.W. Ricketts, J. Phys. D Appl. Phys. 29, 253 (1996)CrossRefGoogle Scholar
  2. 2.
    A. Mukherjee, P. Victor, J. Parui, S.B. Krupanidhi, J. App. Phys. 101(3), 034106(2007)Google Scholar
  3. 3.
    X.X. Zhou, C.L. Chang, Q.N. Li, Q. Feng, C.R. Zhou, X. Liu, Y. Yang, G.H. Chen, J. Mater. Sci. Mater. Electron. 27, 3948 (2016)CrossRefGoogle Scholar
  4. 4.
    S.H. Liu, S.X. Xue, W.Q. Zhang, J.W. Zhai, Ceram. Int. 40(10), 15633 (2014)CrossRefGoogle Scholar
  5. 5.
    H.Y. Zheng, Y.P. Pu, X.Y. Liu, J. Wan, J. Alloys Compd. 674, 272 (2016)CrossRefGoogle Scholar
  6. 6.
    G. Triani, G, A. D. Hilton, B. W. Ricketts, J Mat Sci: Mater in Electronics. 12(1),17(2001)Google Scholar
  7. 7.
    J.I. Yang, R.G. Polcawich, L.M. Sanchez, S. Trolier-McKinstry, J. Appl. Phys. 117(1), 014103 (2015)CrossRefGoogle Scholar
  8. 8.
    X.L. Wang, L.W. Zhang, X.H. Hao, S.L. An, B. Song, J. Mater. Sci. Mater. Electron. 26(12), 9583 (2015)CrossRefGoogle Scholar
  9. 9.
    F.J. Yang, X. Cheng, Z.D. Zhou, Y. Zhang, J. Appl. Phys. 106(11), 114115 (2009)CrossRefGoogle Scholar
  10. 10.
    B.H. Ma, M. Narayanan, U. Balachandran, Mater. Lett. 63(15), 1353 (2009)CrossRefGoogle Scholar
  11. 11.
    Q. Zhang, X.L. Liu, Y. Zhang, X.Z. Song, J. Zhu, I. Baturin, J.F. Chen, Ceram. Int. 41(2), 3030 (2015)CrossRefGoogle Scholar
  12. 12.
    H.W. Chen, C.R. Yang, C.L. Fu, J. Shi, J.H. Zhang, W.J. Leng, J. Mater. Sci. Mater. Electron. 19(4), 379 (2007)CrossRefGoogle Scholar
  13. 13.
    M. Wang, W.L. Li, Y. Feng, Y.F. Hou, T.D. Zhang, W.D. Fei, J.H. Yin, Ceram. Int. 41(10), 13582 (2015)CrossRefGoogle Scholar
  14. 14.
    Y.L. Wang, L.T. Li, J.Q. Qi, Z.L. Gui, Ceram. Int. 28, 657 (2002)CrossRefGoogle Scholar
  15. 15.
    S.H. Liu, S.X. Xue, S.M. Xiu, B. Shen, J.W. Zhai, Sci. Rep. 6, 26198 (2016)CrossRefGoogle Scholar
  16. 16.
    S.M. Xiu, S. Xiao, W.Q. Zhang, S.X. Xue, B. Shen, J.W. Zhai, J. Alloys Compd. 670, 217 (2016)CrossRefGoogle Scholar
  17. 17.
    Q. Xu, S.H. Ding, T.X. Song, Y. Peng, X.L. Wu, J. Inorg. Mater. 28(4), 441 (2013)CrossRefGoogle Scholar
  18. 18.
    Z. Chen, G.Z. Li, X.J. Sun, L.J. Liu, L. Fang, Ceram. Int. 41(9), 11057 (2015)CrossRefGoogle Scholar
  19. 19.
    Y.J. Eoh, E.S. Kim, Ceram. Int. 41, S2 (2015)CrossRefGoogle Scholar
  20. 20.
    T. Wu, Y.P. Pu, K. Chen, Ceram. Int. 39(6), 6787 (2013)CrossRefGoogle Scholar
  21. 21.
    S. Xiao, S.M. Xiu, W.Q. Zhang, B. Shen, J.W. Zhai, Y. Zhang, J. Alloys Compd. 675, 15 (2016)CrossRefGoogle Scholar
  22. 22.
    Z.Y. Shen, Q.G. Hu, Y.M. Li, Z.M. Wang, W.Q. Luo, Y. Hong, Z.X. Xie, R.H. Liao, J. Am. Ceram. Soc. 96, 2551 (2013)CrossRefGoogle Scholar
  23. 23.
    K. Yu, H. Wang, Y.C. Zhou, Y.Y. Bai, Y.J. Niu, J. Appl. Phys. 113(3), 034105 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Zhang, J.J. Huang, T. Ma, X.R. Wang, C.S. Deng, X.M. Dai, Xiaming, J. Am. Ceram. Soc. 94(6), 1805 (2011)CrossRefGoogle Scholar
  25. 25.
    V.S. Puli, D.K. Pradhan, D.B. Chrisey, M. Tomozawa, G.L. Sharma, J.F. Scott, R.S. Katiyar, J. Mater. Sci. 48(5), 2151 (2012)CrossRefGoogle Scholar
  26. 26.
    S.H. Liu, J.W. Zhai, J.W. Wang, S.X. Xue, W.Q. Zhang, ACS Appl. Mater. Interfaces 6(3), 1533 (2014)CrossRefGoogle Scholar
  27. 27.
    Y.Y. Zhao, J.W. Xu, C.R. Zhou, C.L. Yuan, Q.N. Li, G.H. Chen, L. Yuan, H. Wang, Ceram. Int. 42(2), 2221 (2016)CrossRefGoogle Scholar
  28. 28.
    Y.Y. Zhao, J.W. Xu, L. Yuan, C.R. Zhou, X.P. Lu, C.L. Yuan, Q.N. Li, G.H. Chen, H. Wang, J. Alloys Compd. 666, 209 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yan Zhang
    • 1
    • 2
  • Yaoyao Li
    • 1
    • 2
  • Haikui Zhu
    • 1
    • 2
  • Zhenxiao Fu
    • 3
  • Qitu Zhang
    • 1
    • 2
    Email author
  1. 1.College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina
  2. 2.Jiangsu Collaborative Innovation Center for Advanced Inorganic Function CompositesNanjingChina
  3. 3.Guangdong Fenghua Advanced Technology Company LimitedZhaoqingChina

Personalised recommendations