Temperature effects on the structural, optical, electrical and morphological properties of the RF-sputtered Mo thin films

  • N. AkçayEmail author
  • N. Akın
  • B. Cömert
  • S. ÖzçelikEmail author


In this study, the molybdenum (Mo) thin films were deposited onto soda lime glass (SLG) substrates by RF magnetron sputtering method at different temperatures. After the deposition, two of the deposited films were annealed at 500 °C for 30 min under a high purity Argon (Ar) gas atmosphere inside. The all films tested with the tape test had good adhesion to the SLG substrates. The structural and morphological properties of the obtained films were clarified by X-ray diffraction, atomic force microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy techniques. The films exhibited a strong peak at the range of 40.56 and 41.05 with an orientation of the (110) plane. The electrical and reflectivity properties of the films were investigated by Hall Effect measurements and UV–visible spectroscopy techniques, as a function of the substrate and annealing temperatures. The films had a good resistivity of ~10−4 Ω cm. The films deposited at 250 °C had an average optical reflectivity as high as 48.1 % within the wavelength at the range of 400–1100 nm. In addition, diffused sodium (Na) concentrations into the Mo films from SLG substrate were determined by secondary ion mass spectroscopy. It was seen that Na atoms diffused to Mo layers from SLG substrates.


Root Mean Square Soda Lime Glass Thin Film Solar Cell Back Contact Thermal Annealing Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by Ministry of Development (TR) and TUBITAK under the 2011K120290 and 115F280 project numbers, respectively. The authors would like to thank Sisecam for supporting of SLG substrates.


  1. 1.
    K. Orgassa, H.W. Schock, J.H. Werner, Thin Solid Films 431–432, 387–391 (2003)CrossRefGoogle Scholar
  2. 2.
    J.H. Scofield, A. Duda, D. Albin, B.L. Ballard, P.K. Predecki, Thin Solid Films 260, 26–31 (1995)CrossRefGoogle Scholar
  3. 3.
    U. Schmid, H. Seidel, Thin Solid Films 489, 310–319 (2005)CrossRefGoogle Scholar
  4. 4.
    I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi, Prog. Photovolt. Res. Appl. 16, 235–239 (2008)CrossRefGoogle Scholar
  5. 5.
    J.-H. Yoon, S. Cho, W.M. Kim et al., Sol. Energy Mater. Sol. Cells 95(11), 2959–2964 (2011)CrossRefGoogle Scholar
  6. 6.
    T.J. Vink, M.A.J. Somers, J.L.C. Daams, A.G. Dirks, J. Appl. Phys. 70, 4301–4308 (1991)CrossRefGoogle Scholar
  7. 7.
    H. Khatri, and S. Marsillac, J. Phys. Condens. Matter 20(5), 055206 (2008)CrossRefGoogle Scholar
  8. 8.
    M.B. Zellner, R.W. Birkmire, E. Eser, W.N. Shafarman, J.G. Chen, Prog. Photovolt. Res. Appl. 11, 543 (2003)CrossRefGoogle Scholar
  9. 9.
    W.N. Shafarman, J. Zhu, Thin Solid Films 361–362, 473–477 (2000)CrossRefGoogle Scholar
  10. 10.
    N. Akin, Y. Ozen, H.I. Efkere, M. Cakmak, S. Ozcelik, Surf. Interface Anal. 47(1), 93–98 (2015)CrossRefGoogle Scholar
  11. 11.
    C.H. Huang, H.L. Cheng, W.E. Chang, M.Y. Huang, Y.J. Chien, Semicond. Sci. Technol. 27, 115020 (2012)CrossRefGoogle Scholar
  12. 12.
    P. Huang, C. Huang, M. Lin, C. Chou, C. Hsu, and C. Kuo, Int. J. Photoenergy 2013, Article ID 390824, 8 (2013)Google Scholar
  13. 13.
    S.A. Vanalakar, G.L. Agawane, S.W. Shin, M.P. Suryawanshi, K.V. Gurav, K.S. Jeon, P.S. Patil, C.W. Jeong, J.Y. Kim, J.H. Kim, J. Alloys Compd. 619, 109–121 (2015)CrossRefGoogle Scholar
  14. 14.
    H. Frey, Handbook of Thin Film Technology (Springer, Berlin, 2015), pp. 225–252CrossRefGoogle Scholar
  15. 15.
    J.N. Alexander, S. Higashiya, D. Caskey Jr., H. Efstathiadis, P. Haldar, Sol. Energy Mater. Sol. Cells 125, 47–53 (2014)CrossRefGoogle Scholar
  16. 16.
    M.M. Momeni, Appl. Surf. Sci. 357, 160–166 (2016)CrossRefGoogle Scholar
  17. 17.
    M.M. Momeni, Y. Ghayeb, J. Mater. Sci. Mater. Electron. 27, 3318–3327 (2016)CrossRefGoogle Scholar
  18. 18.
    Z.-H. Li, E.-S. Cho, S.J. Kwon, Appl. Surf. Sci. 257, 9682–9688 (2011)CrossRefGoogle Scholar
  19. 19.
    N. Dhar, P. Chelvanathan, M. Zaman, K. Sopian, N. Amin, Energy Proc. 33, 186–197 (2013)CrossRefGoogle Scholar
  20. 20.
    S.S. Wang, C.Y. Hsu, F.J. Shiou, P.C. Huang, D.C. Wen, J. Electron. Mater. 42, 71–77 (2013)CrossRefGoogle Scholar
  21. 21.
    K. Ellmer, R. Wendt, Surf. Coat. Technol. 93, 21–26 (1997)CrossRefGoogle Scholar
  22. 22.
    H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures (Wiley, New York, 1974)Google Scholar
  23. 23.
    J.T. Black, R.A. Kohser, De Garmo’s Materials and Processes in Manufacturing, 9th edn. (Wiley, New York, 2013), p. 223Google Scholar
  24. 24.
    A. Den Outer, J.F. Kaashoek, H.R.G.K. Hack, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 32(1), 3–9 (1995)CrossRefGoogle Scholar
  25. 25.
    S.F. Wang, H.C. Yang, C.F. Liu, and H.Y.Y. Bor, Adv. Mater. Sci. Eng. (2014). doi: 10.1155/2014/531401 Google Scholar
  26. 26.
    S.A. Pethe, E. Takahashi, A. Kaul, N.G. Dhere, Sol. Energy Mater. Sol. Cells 100, 1–5 (2012)CrossRefGoogle Scholar
  27. 27.
    G. Gordilla, F. Mesa, C. Calderon, Braz. J. Phys. 36, 982–985 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Photonics Application and Research CenterGazi UniversityAnkaraTurkey
  2. 2.Department of Physics, Faculty of ScienceGazi UniversityAnkaraTurkey
  3. 3.Institute of Science and Technology, Department of Advanced TechnologiesGazi UniversityAnkaraTurkey

Personalised recommendations