Advertisement

Luminescence properties of violet-blue emitting Ca2MgSi2O7:Ce3+ phosphor prepared by solid state reaction method

  • Ishwar Prasad SahuEmail author
Article

Abstract

Cerium doped di-calcium magnesium di-silicate phosphor namely Ca2MgSi2O7:Ce3+ phosphor was prepared by the solid state reaction method. The crystal structure of sintered phosphor was an akermanite type structure which belongs to the tetragonal crystallography. The chemical composition of sintered phosphor was confirmed by energy dispersive X-ray spectroscopy. Thermoluminescence kinetics parameters [activation energy (E), frequency factor (s) and order of the kinetics (b)] of discussed phosphor was evaluated by the peak shape method. Under the ultraviolet excitation (327 nm), two well known main luminescence bands with the wavelength at 373 and 393 nm was composed of a broad band peaking at 385 nm, belonging to the broad emission band which emits violet-blue color. This broad band emission in Ce3+ ion is observed due to 5d–4f allowed transition. Mechanoluminescence (ML) intensity of Ca2MgSi2O7:Ce3+ phosphor increases linearly with increasing impact velocity of the moving piston which suggests that prepared phosphor can be used as sensors to detect the stress of an object. The time of the peak ML intensity and the decay rate did not change significantly with respect to increasing impact velocity of the moving piston. Thus, the present investigation indicates the piezo-electricity was responsible to produce ML in prepared phosphor.

Keywords

Impact Velocity Glow Curve Trap Depth Glow Peak Prepared Phosphor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett. 64, 1687 (1994)CrossRefGoogle Scholar
  2. 2.
    Q. Su, H. Wu, Y. Pan, J. Xu, C. Guo, X. Zhang, J. Zhang, J. Wang, M. Zhang, J. Rare Earths 23, 513 (2005)Google Scholar
  3. 3.
    X. Piao, T. Horikawa, H. Hanzawa, K. Machida, Chem. Lett. 35, 334 (2006)CrossRefGoogle Scholar
  4. 4.
    S.H. Chen, J.M. Lin, Opt. Laser Technol. 44, 169 (2012)CrossRefGoogle Scholar
  5. 5.
    S. Nakamura, G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers (Springer, Berlin, 1997)CrossRefGoogle Scholar
  6. 6.
    R.J. Xie, N. Hirosaki, Sci. Technol. Adv. Mater. 8, 588 (2007)CrossRefGoogle Scholar
  7. 7.
    E.F. Schubert, J.K. Kim, Solid-state light sources getting smart. Science 308(5726), 1274 (2005)CrossRefGoogle Scholar
  8. 8.
    G. Blasse, A. Brill, J. Chem. Phys. 47(12), 5139 (1967)CrossRefGoogle Scholar
  9. 9.
    D. Zhao, S.J. Seo, B.S. Bae, Adv. Mater. (Deerfield Beach Fla.) 19(21), 3473 (2007)CrossRefGoogle Scholar
  10. 10.
    Y. Chen, K.W. Cheah, M. Gong, J. Lumin. 131(8), 1589 (2011)CrossRefGoogle Scholar
  11. 11.
    Z. Cui, R. Ye, D. Deng, Y. Hua, S. Zhao, G. Jia, C. Li, S. Xu, J. Alloys Compd. 509(8), 3553 (2011)CrossRefGoogle Scholar
  12. 12.
    Y.Q. Li, J.E.J. van Steen, J.W.H. van Krevel, G. Botty, A.C.A. Delsing, F.J. Di Salvo, G. De With, H.T. Hintzen, J. Alloys Compd. 417(1–2), 273 (2006)CrossRefGoogle Scholar
  13. 13.
    Y.C. Li, Y.H. Chang, Y.F. Lin, Y.S. Chang, Y.J. Lin, J. Alloys Compd. 439(1–2), 367 (2007)CrossRefGoogle Scholar
  14. 14.
    I.P. Sahu, D.P. Bisen, N. Brahme, Res. Chem. Intermed. 41(9), 6649 (2015)CrossRefGoogle Scholar
  15. 15.
    H. Yu, Y. Lai, G. Gao, L. Kong, G. Li, S. Gan, G. Hong, J. Alloys Compd. 509(23), 6635 (2011)CrossRefGoogle Scholar
  16. 16.
    D. Chen, Y. Zhou, W. Xu, J. Zhong, Z. Ji, W. Xiang, J. Mater. Chem. C 4, 1704 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Birkel, K.A. Denault, N.C. George, C.E. Doll, B. Hery, A.A. Mikhailovsky, C.S. Birkel, B.C. Hong, R. Seshadri, Chem. Mater. 24, 1198 (2012)CrossRefGoogle Scholar
  18. 18.
    V. Bachmann, C. Ronda, A. Meijerink, Chem. Mater. 21, 2077 (2009)CrossRefGoogle Scholar
  19. 19.
    Z. Xiao, Z. Xiao, US Patent No. 6-093-346 (2000)Google Scholar
  20. 20.
    I.P. Sahu, D.P. Bisen, N. Brahme, L. Wanjari, R.K. Tamrakar, Res. Chem. Intermed. 41(11), 8797 (2015)CrossRefGoogle Scholar
  21. 21.
    JCPDS file number 39-1256, JCPDS International Center for Diffraction Data Google Scholar
  22. 22.
    B. Li, J. Yang, J. Wang, M. Wu, Opt. Mater. 36, 1649 (2014)CrossRefGoogle Scholar
  23. 23.
    B. Liu, C. Shi, M. Yin, L. Dong, Z. Xiao, J. Alloys Compd. 387, 65 (2005)CrossRefGoogle Scholar
  24. 24.
    Y. Chen, X. Cheng, M. Liu, Z. Qi, C. Shi, J. Lumin. 129, 531 (2009)CrossRefGoogle Scholar
  25. 25.
    H. Wu, Y. Hu, L. Chen, X. Wang, Mater. Lett. 65, 2676 (2011)CrossRefGoogle Scholar
  26. 26.
    M.A. Salim, R. Hussain, M.S. Abdullah, S. Abdullah, N.S. Alias, Solid State Sci. Technol. 17, 59 (2009)Google Scholar
  27. 27.
    Z. Gou, J. Chang, W. Zhai, J. Eur. Ceram. Soc. 25, 1507 (2005)CrossRefGoogle Scholar
  28. 28.
    Z. Zhang, Y. Wang, H. Wang, Z. Sun, L. Jia, J. Phys Conf. Ser. 152, 012050 (2009)CrossRefGoogle Scholar
  29. 29.
    C. Chang, D. Mao, J. Alloys Compd. 390, 133 (2005)CrossRefGoogle Scholar
  30. 30.
    G.T. Chandrappa, S. Ghosh, K.C. Patil, J. Mater. Syn. Process. 7, 273 (1999)CrossRefGoogle Scholar
  31. 31.
    I.P. Sahu, D.P. Bisen, N. Brahme, R.K. Tamrakar, J. Radiat. Res. Appl. Sci. 8, 104 (2015)CrossRefGoogle Scholar
  32. 32.
    R. Chen, J. Electrochem. Soc. 116, 1254 (1969)CrossRefGoogle Scholar
  33. 33.
    F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.H. Whangbo, A. Garcia, Chem. Mater. 17, 3904 (2005)CrossRefGoogle Scholar
  34. 34.
    T. Katsumata, R. Sakai, S. Komuro, T. Morikawa, J. Electrochem. Soc. 150(5), H111 (2003)CrossRefGoogle Scholar
  35. 35.
    F.M. Emen, N. Kulcu, A.N. Yazici, Eur. J. Chem. 1(1), 28 (2010)CrossRefGoogle Scholar
  36. 36.
    I.P. Sahu, D.P. Bisen, N. Brahme, Displays 38, 68 (2015)CrossRefGoogle Scholar
  37. 37.
    Z. Yuan, C. Chang, D. Mao, W. Ying, J. Alloys Compd. 377(1–2), 268 (2004)CrossRefGoogle Scholar
  38. 38.
    F.M. Emen, V.E. Kafadar, N. Kulcu, A.N. Yazici, J. Lumin. 144, 133 (2013)CrossRefGoogle Scholar
  39. 39.
    H.N. Luitel, T. Watari, R. Chand, T. Torikai, M. Yada, J. Mater. Mater. Sci. Eng. B 178(12), 834 (2013)CrossRefGoogle Scholar
  40. 40.
    I.P. Sahu, J. Mater. Sci. Mater. Electron. 26(9), 7059 (2015)CrossRefGoogle Scholar
  41. 41.
    M. Mashangva, M.N. Singh, T.B. Singh, Indian J. Pure Appl. Phys. 49, 583 (2011)Google Scholar
  42. 42.
    V. Pagonis, G. Kitis, C. Furetta, Numerical and Practical Exercises in Thermoluminescence (Springer, Berlin, 2006)Google Scholar
  43. 43.
    D. Chen, Z. Wan, Y. Zhou, P. Huang, Z. Ji, J. Alloys Compd. 654, 151 (2016)CrossRefGoogle Scholar
  44. 44.
    H. Ni, H. Liang, M. Xie, W. Chen, Q. Su, Y. Tao, Y. Huang, Z. Gao, J. Electrochem. Soc. 159(3), J43 (2012)CrossRefGoogle Scholar
  45. 45.
    D. Chen, W. Xiang, X. Liang, J. Zhong, H. Yu, M. Ding, H. Lu, Z. Ji, J. Euro. Ceram. Soc. 35, 859 (2015)CrossRefGoogle Scholar
  46. 46.
    N. Salah, P.D. Sahare, Radiat. Meas. 41, 665 (2006)CrossRefGoogle Scholar
  47. 47.
    S. Neicheva, A. Gektin, N. Shiran, K. Shimamura, E. Villora, Radiat. Meas. 42, 811 (2007)CrossRefGoogle Scholar
  48. 48.
    Y. Gong, Y. Wang, X. Xu, Y. Li, Z. Jiang, J. Electrochem. Soc. 156(10), J295 (2009)CrossRefGoogle Scholar
  49. 49.
    Y. Zhou, D. Chen, W. Tian, Z. Ji, J. Am. Ceram. Soc. 98(8), 2445 (2015)CrossRefGoogle Scholar
  50. 50.
    D. Chen, Y. Chen, Ceram. Int. 40(9), 15325 (2014)CrossRefGoogle Scholar
  51. 51.
    CIE, International Commission on Illumination. Publication CIE no. 15 (E-1.3.1) (1931)Google Scholar
  52. 52.
    T. Aitasalo, P. Daren, J. Holsa, K. Junger, J.C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, W. Strek, J. Solid State Chem. 171, 114 (2003)CrossRefGoogle Scholar
  53. 53.
    I.P. Sahu, D.P. Bisen, N. Brahme, R.K. Tamrakar, J. Lumin. 167, 278 (2015)CrossRefGoogle Scholar
  54. 54.
    D.R. Vij, Luminescence of Solids (Plenum Press, New York, 1998)CrossRefGoogle Scholar
  55. 55.
    B.P. Chandra, Open Nanosci. J. 5, 45 (2011)CrossRefGoogle Scholar
  56. 56.
    I.P. Sahu, P. Chandrakar, R.N. Baghel, D.P. Bisen, N. Brahme, R.K. Tamrakar, J. Alloys Compd. 649, 1329 (2015)CrossRefGoogle Scholar
  57. 57.
    H. Zhang, N. Terasaki, H. Yamada, C.N. Xu, Thin Solid Films 518, 610 (2009)CrossRefGoogle Scholar
  58. 58.
    I.P. Sahu, D.P. Bisen, N. Brahme, Lumin. J. Biol. Chem. Lumin. 30(5), 526 (2015)CrossRefGoogle Scholar
  59. 59.
    H. Zhang, N. Terasaki, H. Yamada, C.N. Xu, Int. J. Mod. Phys. B 23, 1028 (2009)CrossRefGoogle Scholar
  60. 60.
    I.P. Sahu, D.P. Bisen, N. Brahme, Lumin. J. Biol. Chem. Lumin. 30(7), 1125 (2015)CrossRefGoogle Scholar
  61. 61.
    X. Wang, C.N. Xu, H. Yamada, K. Nishikubo, X.G. Zheng, Adv. Mater. 17, 1254 (2005)CrossRefGoogle Scholar
  62. 62.
    H. Zhang, C.N. Xu, N. Terasaki, H. Yamada, Phys. E 42, 2872 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Studies in Physics and AstrophysicsPt. Ravishankar Shukla UniversityRaipurIndia

Personalised recommendations