Crystal structure and magnetism of BiFeO3 nanoparticles regulated by rare-earth Tb substitution

  • QiaoXia Xing
  • Zhonglin Han
  • Shifeng ZhaoEmail author


Tb-doped BiFeO3 nanoparticles were prepared using sol–gel method. The effect of Tb substitution on crystal structure and magnetism of BiFeO3 nanoparticles were investigated. It is shown that the crystal structure and magnetism of BiFeO3 nanoparticles are regulated by rare-earth Tb substitution. Particularly, the sizes of the particles are reduced to smaller than 100 nm after doping with Tb. The magnetization of Tb-doped BiFeO3 nanoparticles has been enhanced in magnitude, which is mainly attributed to the suppression of spin cycloid structure belonging to R3c phase fraction in the process of rhombohedral-to-orthorhombic structural phase transformations. At the meantime, the magnetic hysteresis loops show exchange bias towards negative axis. The exchange bias behaviors originate from the coupling interaction between antiferromagnetic core and ferromagnetic surface. The present work provides a route regulating the magnetization of BiFeO3 particles as well as further promoting its applications in multiferroic materials.


BiFeO3 Rietveld Refinement Physical Property Measurement System Pure BiFeO3 BiFeO3 Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11264026, 11564028), and Inner Mongolia Science Foundation for Distinguished Young Scholars (Grant No. 2014JQ01).


  1. 1.
    F.Z. Huang, Z.J. Wang, X.M. Lu, J.T. Zhang, K.L. Min, W.W. Lin, R.X. Ti, T.T. Xu, J. He, C. Yue, J.S. Zhu, Peculiar magnetism of BiFeO3 nanoparticles with size approaching the period of the spiral spin structure. Sci. Rep. 3, 2907 (2013)Google Scholar
  2. 2.
    C.D. Pham, J. Chang, M.A. Zurbuchen, J.P. Chang, Synthesis and characterization of BiFeO3 thin films for multiferroic applications by radical enhanced atomic layer deposition. Chem. Mater. 27, 7282 (2015)CrossRefGoogle Scholar
  3. 3.
    M. Arora, P.C. Sati, S. Chauhan, H. Singh, K.L. Yadav, S. Chhoker, M. Kumar, Structural, magnetic and optical properties of Bi−xDyxFeO3 nanoparticles synthesized by sol–gel method. Mater. Lett. 96, 71 (2013)CrossRefGoogle Scholar
  4. 4.
    B. Hu, J.F. Wang, J. Zhang, Z.B. Gu, S.T. Zhang, Synthesis, structures and properties of single phase BiFeO3 and Bi2Fe4O9 powders by hydrothermal method. J. Mater. Sci. Mater. Electron. 26, 6887–6891 (2015)CrossRefGoogle Scholar
  5. 5.
    L. Feng, S.W. Yang, Y. Lin, D.L. Zhang, W.C. Huang, W.B. Zhao, Y.W. Yin, S.N. Dong, X.G. Li, Effects of Interface layers and domain walls on the ferroelectric-resistive switching behavior of Au/BiFeO3/La0.6Sr0.4MnO3 heterostructures. ACS Appl. Mater. Interfaces 7, 26036 (2015)CrossRefGoogle Scholar
  6. 6.
    G. Tian, F.Y. Zhang, J.X. Yao, H. Fan, P.L. Li, Z.W. Li, X. Song, X.Y. Zhang, M.H. Qin, M. Zeng, Z. Zhang, J.J. Yao, X.S. Gao, J.M. Liu, Magnetoelectric coupling in well-ordered epitaxial BiFeO3/CoFe2O4/SrRuO3 heterostructured nanodot array. ACS Nano 2016, 10 (1025)Google Scholar
  7. 7.
    M. Arora, S. Chauhan, P.C. Sati, M. Kumar, S. Chhoker, Evidence of spin-two phonon coupling and improved multiferroic behavior of Bi1−xDyxFeO3 nanoparticles. Ceram. Int. 40, 13347 (2014)CrossRefGoogle Scholar
  8. 8.
    Y.J. Wu, J.G. Wan, C.F. Huang, Y.Y. Weng, S.F. Zhao, J.M. Liu, G.H. Wang, Strong magnetoelectric coupling in multiferroic BiFeO3–Pb(Zr0.52Ti0.48)O3 composite films derived from electrophoretic deposition. J Appl. Phys. Lett. 93, 192915 (2008)CrossRefGoogle Scholar
  9. 9.
    J.L. Mi, T.N. Jensen, M. Christensen, C. Tyrsted, J.E. Jørgensen, B.B. Iversen, High-temperature and high-pressure aqueous solution formation, growth, crystal structure, and magnetic properties of BiFeO3 nanocrystals. Chem. Mater. 23, 1158 (2011)CrossRefGoogle Scholar
  10. 10.
    X.G. Huang, J. Zhang, W.F. Rao, T.Y. Sang, B. Song, C.P. Wong, Tunable electromagnetic properties and enhanced microwave absorption ability of flaky graphite/cobalt zinc ferrite composites. J. Alloys Compd. 662, 409 (2016)CrossRefGoogle Scholar
  11. 11.
    X.G. Huang, J. Zhang, Z.H. Liu, T.Y. Sang, B. Song, H.L. Zhu, C.P. Wong, Facile preparation and microwave absorption properties of porous hollow BaFe12O19/CoFe2O4 composite microrods. J. Alloys Compd. 2015, 648 (1072)Google Scholar
  12. 12.
    Y. Deng, D. Wu, Q. Chen, Y.W. Du, Synthesis, microstructure, magnetic properties and Raman scattering of single-crystalline BiFeO3 nanorods prepared by hydrothermal technique. Optoelectron. Adv. Mater. 6, 370 (2012)Google Scholar
  13. 13.
    A. Jaiswal, R. Das, K. Vivekanand, P.M. Abraham, S. Adyanthaya, P. Poddar, Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals. J. Phys. Chem. C 114, 2108 (2010)CrossRefGoogle Scholar
  14. 14.
    T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7, 766 (2007)CrossRefGoogle Scholar
  15. 15.
    V.A. Reddy, N.P. Pathak, R. Nath, Particle size dependent magnetic properties and phase transitions in multiferroic BiFeO3 nano-particles. J. Alloys Compd. 543, 206 (2012)CrossRefGoogle Scholar
  16. 16.
    D.P. Dutta, B.P. Mandal, R. Naik, G. Lawes, A.K. Tyagi, Magnetic, ferroelectric, and magnetocapacitive properties of sonochemically synthesized Sc-doped BiFeO3 nanoparticles. J. Phys. Chem. C 117, 2382 (2013)CrossRefGoogle Scholar
  17. 17.
    Y. Wang, C.W. Nan, Effect of Tb doping on electric and magnetic behavior of BiFeO3 thin films. J. Appl. Phys. 103, 4103 (2008)Google Scholar
  18. 18.
    J. Liu, H.M. Deng, H.Y. Cao, X.Z. Zhai, J.H. Tao, L. Sun, P.X. Yang, J.H. Chu, Influence of rare-earth elements doping on structure and optical properties of BiFeO3 thin films fabricated by pulsed laser deposition. Appl. Surf. Sci. 307, 543 (2014)CrossRefGoogle Scholar
  19. 19.
    W.Y. Xing, Y.N.N. Ma, Y.L. Bai, S.F. Zhao, Enhanced ferromagnetism of Er-doped BiFeO3 thin films derived from rhombohedral-to-orthorhombic phase transformations. Mater. Lett. 161, 216 (2015)CrossRefGoogle Scholar
  20. 20.
    J. Zhang, Y.J. Wu, X.K. Chen, X.J. Chen, Structural evolution and magnetization enhancement of Bi1−xTbxFeO3. J. Phys. Chem. Solids 74, 849 (2013)CrossRefGoogle Scholar
  21. 21.
    P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, O. Eriksson, Theoretical investigation of magnetoelectric behavior in BiFeO3. Phys. Rev. B 74, 224412 (2006)CrossRefGoogle Scholar
  22. 22.
    M. Gowrishankar, D.R. Babu, S. Madeswaran, Effect of Gd–Ti co-substitution on structural, magnetic and electrical properties of multiferroic BiFeO3. J. Magn. Magn. Mater. 3, 085 (2016)Google Scholar
  23. 23.
    A. Tamilselvan, S. Balakumar, M. Sakar, C. Nayek, P. Murugavel, K.S. Kumar, Role of oxygen vacancy and Fe–O–Fe bond angle in compositional, magnetic, and dielectric relaxation on Eu-substituted BiFeO3 nanoparticles. Dalton Trans. 43, 5731 (2014)CrossRefGoogle Scholar
  24. 24.
    T.J. Park, G.C. Papaefthymiou, A.J. Viescas, Y. Lee, H.J. Zhou, S.S. Wong, Composition-dependent magnetic properties of BiFeO3–BaTiO3 solid solution nanostructures. Phys. Rev. B 82, 024431 (2010)CrossRefGoogle Scholar
  25. 25.
    G. Dhir, P. Uniyal, N.K. Verma, Effect of particle size on magnetic and dielectric properties of nanoscale Dy-doped BiFeO3. J. Supercond. Nov. Magn. 27, 1569 (2014)CrossRefGoogle Scholar
  26. 26.
    J.I. Hong, T. Leo, D.J. Smith, A.E. Berkowitz, Enhancing exchange bias with diluted antiferromagnets. Phys. Rev. Lett. 96, 117204 (2006)CrossRefGoogle Scholar
  27. 27.
    J.S. Park, Y.J. Yoo, J.S. Hwang, J.H. Kang, B.W. Lee, Y.P. Lee, Enhanced ferromagnetic properties in Ho and Ni co-doped BiFeO3 ceramics. J. Appl. Phys. 115, 013904 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Physical Science and Technology, Inner Mongolia Key Lab of Nanoscience and NanotechnologyInner Mongolia UniversityHohhotChina

Personalised recommendations