Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 12, pp 12452–12458 | Cite as

Dye sensitized solar cell based on TiO2 nanoparticles and chlorophyll from Pandanus amaryllifolius Roxb. leaves

  • Rahul Zanan
  • Kalpana Pawar
  • Altafhusain Nadaf
  • Habib M. Pathan
Article
  • 248 Downloads

Abstract

Dye sensitized solar cell (DSSC) is a low-cost photo electrochemical solar cell, that belongs to third generation solar cells and known for its easy fabrication procedures. Its working is based on the interfacial kinetics between a photo-sensitized nanocryastalline anode and an electrolyte, with a counter electrode to complete the cell configuration. A lot of research has been conducted due to their interesting potential for low-cost, lightweight, with reasonably good photovoltaic efficiency. Present work reports the dye sensitized solar cells using TiO2 nanoparticles with Pandanus amaryllifolius chlorophyll as an absorber. P. amaryllifolius leaves are rich in chlorophyll and widely used as natural colorant to impart deep green colour to food products. Moreover, the leaves are rich in basmati aroma volatiles. In the present investigation, chlorophyll pigment was extracted from P. amaryllifolius leaves and nanocrystalline Titanium dioxide (TiO2) film was prepared by doctor blade method. The Titania films were immersed overnight in the chlorophyll extract for sensitization. An electrolyte solution consisting of Polyiodide was injected into the cell before sealing it. Pt coated FTO was used as counter electrode to assemble the cell configuration before it was characterized for its photovoltaic performance. The photoelectrochemical performance of the fabricated DSSC based on this dye showed 0.14 mA/cm2 short circuit current (JSC) and 0.125 V open circuit voltage (VOC).

References

  1. 1.
    B. O’Reagan, M. Grätzel, Nature 353, 737–740 (1991)CrossRefGoogle Scholar
  2. 2.
    M. Grätzel, J. Photochem. Photobiol. A 164, 3–14 (2004)CrossRefGoogle Scholar
  3. 3.
    T.J. Abodunrin, O. Obafemi, A.O. Boyo, T. Adebayo, R. Jimoh, AMPC 5, 205–213 (2015)CrossRefGoogle Scholar
  4. 4.
    G. Smestad, C. Bignozzi, R. Argazzi, Sol. Energy Mater. Sol. Cells 32(3), 259–272 (1994)CrossRefGoogle Scholar
  5. 5.
    N. Koumura, W. Zhong-Sheng, S. Mori, M. Miyashita, E. Suzuki, K. Hara, J. Am. Chem. Soc. 128(44), 14256–14257 (2006)CrossRefGoogle Scholar
  6. 6.
    E. Yamazaki, M. Murayama, N. Nishikawa, N. Hashimoto, M. Shoyama, O. Kurita, Sol. Energy 81(4), 512–516 (2007)CrossRefGoogle Scholar
  7. 7.
    T.M. El-Agez, A.A. El-Tayyan, M.S. Abdel-Latif, J. Islam. Univ. Gaza 17, 61–70 (2009)Google Scholar
  8. 8.
    T.M. El-Agez, A.A. El-Tayyan, A. Al-Kahlout, S.A. Taya, M.S. Abdel-Latif, Int. J. Mater. Chem. 2(3), 105–110 (2012)CrossRefGoogle Scholar
  9. 9.
    H. Zhou, L. Wu, Y. Gao, T. Ma, J. Photochem. Photobiol. A 219, 188–194 (2011)CrossRefGoogle Scholar
  10. 10.
    G. Calogero, A. Sinopoli, I. Citro, G. Di-Marco, V. Petrov, A.M. Diniz, A.J. Parola, F. Pina, Photochem. Photobiol. Sci. 12, 883–894 (2013)CrossRefGoogle Scholar
  11. 11.
    S.A. Taya, T.M. El-Agez, H.S. El-Ghamri, M.S. Abdel-Latif, IJMSA 2(2), 37–42 (2013)CrossRefGoogle Scholar
  12. 12.
    M.S. Abdel-Latif, T.M. El-Agez, S.A. Taya, A.Y. Batniji, H.S. El-Ghamri, Mater. Sci. Appl. 4(9), 516–520 (2013)Google Scholar
  13. 13.
    J. Bisquert, J. García-Cañadas, I. Mors-Seró, E. Palo-Mares, Proc. SPIE 5215, Organic Photovoltaics IV, 49–59 (2004)Google Scholar
  14. 14.
    M.K. Nazeeruddin, P. Pechy, T. Renouard, S.M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G.B. Deacon, C.A. Bignozzi, M. Grätzel, J. Am. Chem. Soc. 8, 1613–1624 (2001)CrossRefGoogle Scholar
  15. 15.
    T. Asano, T. Kubo, Y. Nishikitani, J. Photochem. Photobiol. A 164, 111–115 (2004)CrossRefGoogle Scholar
  16. 16.
    D.W. Kim, Y.B. Jeong, S.H. Kim, D.Y. Lee, J.S. Song, J. Power Sources 149, 112–116 (2005)CrossRefGoogle Scholar
  17. 17.
    H. Chang, H.T. Su, W.A. Chena, K.D. Huangc, S.H. Chiend, S.L. Chenb, C.C. Chene, Sol. Energy 84, 130–136 (2010)CrossRefGoogle Scholar
  18. 18.
    K. Tennakone, G.R.R.A. Kumara, A.R. Kumarasinghe, P.M. Sirimanne, K.G.U. Wijayantha, J. Photochem. Photobiol. A 94, 217–220 (1996)CrossRefGoogle Scholar
  19. 19.
    N.J. Cherepy, G.P. Smestad, M. Grätzel, J.Z. Zhang, J. Phys. Chem. B 101, 9342–9351 (1997)CrossRefGoogle Scholar
  20. 20.
    G.P. Smestad, Sol. Energy Mater. Sol. Cells 55, 157–178 (1998)CrossRefGoogle Scholar
  21. 21.
    C.G. Garcia, A.S. Polo, N.Y. Iha, J. Photochem. Photobiol. A 160, 87–91 (2003)CrossRefGoogle Scholar
  22. 22.
    Y. Amao, T. Komori, Biosens. Bioelectron. 19, 843–847 (2004)CrossRefGoogle Scholar
  23. 23.
    S. Hao, J. Wu, Y. Huang, J. Lin, Sol. Energy 80, 209–214 (2006)CrossRefGoogle Scholar
  24. 24.
    A.S. Polo, N.Y. Iha, Sol. Energy Mater. Sol. Cells 90, 1936–1944 (2006)CrossRefGoogle Scholar
  25. 25.
    G.R.A. Kumara, S. Kaneko, M. Okuya, B. Onwona-Agyeman, A. Konno, K. Tennakone, Sol. Energy Mater. Sol. Cells 90, 1220–1226 (2006)CrossRefGoogle Scholar
  26. 26.
    K. Tennakone, A.R. Kumarasinghe, G.R.R.A. Kumara, K.G.U. Wijayantha, P.M. Sirimanne, J. Photochem. Photobiol. 108, 193–198 (1997)CrossRefGoogle Scholar
  27. 27.
    Q. Dai, J. Rabani, J. Photochem. Photobiol. A 148, 17–24 (2002)CrossRefGoogle Scholar
  28. 28.
    M. Grätzel, J. Photochem. Photobiol. C 4, 145–153 (2003)CrossRefGoogle Scholar
  29. 29.
    P.M. Sirimanne, M.K.I. Senevirathna, E.V.A. Premalal, P.K.D.D.P. Pitigala, V. Sivakumar, K. Tennakone, J. Photochem. Photobiol. A 177, 324–327 (2006)CrossRefGoogle Scholar
  30. 30.
    K. Wongcharee, V. Meeyoo, S. Chavadej, Sol. Energy Mater. Sol. Cells 91, 566–571 (2007)CrossRefGoogle Scholar
  31. 31.
    D. Zhang, S.M. Lanier, J.A. Downing, J.L. Avent, J. Lumc, J.L. McHale, J. Photochem. Photobiol. A 195, 72–80 (2008)CrossRefGoogle Scholar
  32. 32.
    M.S. Roy, P. Balraju, M. Kumar, G.D. Sharma, Sol. Energy Mater. Sol. Cells 92, 909–913 (2008)CrossRefGoogle Scholar
  33. 33.
    J.M.R.C. Fernando, G.K.R. Senadeera, Curr. Sci. 95, 663–666 (2008)Google Scholar
  34. 34.
    G. Calogero, G. Di, Sol. Energy Mater. Sol. Cells 92, 1341–1346 (2008)CrossRefGoogle Scholar
  35. 35.
    P. Luo, H. Niu, G. Zheng, X. Bai, M. Zhang, W. Wang, Acta Part A 74, 936–942 (2009)CrossRefGoogle Scholar
  36. 36.
    S. Furukawa, H. Iino, T. Iwamoto, K. Kukita, S. Yamauchi, Thin Solid Films 518, 526–529 (2009)CrossRefGoogle Scholar
  37. 37.
    N.M. Gómez-Ortíz, I.A. Vázquez-Maldonado, A.R. Pérez-Espadas, G.J. Mena-Rejón, J.A. Azamar-Barrios, G. Oskam, Sol. Energy Mater. Sol. Cells 94, 40–44 (2010)CrossRefGoogle Scholar
  38. 38.
    R. Espinosa, I. Zumeta, J.L. Santana, F. Martínez-Luzardo, B. González, S. Docteur, E. Vigil, Sol. Energy Mater. Sol. Cells 85, 359–369 (2005)CrossRefGoogle Scholar
  39. 39.
    Y. Amao, Y. Yamada, K. Aoki, J. Photochem. Photobiol. A 164, 47–51 (2004)CrossRefGoogle Scholar
  40. 40.
    E.M. Jin, K.H. Park, B. Jin, J.J. Yun, H.B. Gu, Phys. Scr. T139, 014006 (2010)CrossRefGoogle Scholar
  41. 41.
    H. Chang, H.M. Wu, T.L. Chen, K.D. Huang, C.S. Jwo, Y.J. Lo, J. Alloys Compd. 495, 606–610 (2010)CrossRefGoogle Scholar
  42. 42.
    D. Zhang, S.M. Lanier, J.A. Downing, J.L. Avent, J. Lum, J.L. McHale, J. Photochem. Photobiol. A 219, 188–194 (2011)CrossRefGoogle Scholar
  43. 43.
    B.C. Stone, Econ. Bot. 32, 285–293 (1978)CrossRefGoogle Scholar
  44. 44.
    V.D. Vartak, J. Bombay Nat. Hist. Soc. 78, 196–198 (1981)Google Scholar
  45. 45.
    P.N. Ravindran, I. Balachandran, Spice India 18, 16–24 (2005)Google Scholar
  46. 46.
    K.V. Wakte, A.B. Nadaf, R.J. Thengane, N. Jawali, Genet. Resour. Crop Evol. 56, 735–740 (2009)CrossRefGoogle Scholar
  47. 47.
    R.G. Buttery, B.O. Juliano, L.C. Ling, Chem. Ind. 23, 478 (1983)Google Scholar
  48. 48.
    J. Jiang, in Flavour Chemistry of Ethnic Foods, ed. by F. Shadidi, C.T. Ho (Kluwer, New York, 1999), pp. 105–109CrossRefGoogle Scholar
  49. 49.
    N. Laohakunjit, A. Noomhorm, Flavour Fragr. J. 19, 251–259 (2004)CrossRefGoogle Scholar
  50. 50.
    P. Bhattacharjee, A. Kshirsagar, R.S. Singhal, Food Chem. 91, 255–259 (2005)CrossRefGoogle Scholar
  51. 51.
    K.V. Wakte, A.B. Nadaf, S. Krishnan, R.J. Thengane, Curr. Sci. 93, 238–242 (2007)Google Scholar
  52. 52.
    D.P. Khanal, JMMIHS 1, 40–48 (2011)Google Scholar
  53. 53.
    M.L.T. Nguyen, Ethnobot. Res. Appl. 4, 175–201 (2006)CrossRefGoogle Scholar
  54. 54.
    S. Porrarud, A. Pranee, Int. Food Res. J. 17, 1031–1042 (2010)Google Scholar
  55. 55.
    A. Lim, N. HajiManaf, K. Tennakoon, R.L.N. Chandrakanthi, L.B.L. Lim, J.M.R. Sarath-Bandara, P. Ekanayake, J. Biophys. (2015). doi:10.1155/2015/510467 Google Scholar
  56. 56.
    M.A.M. Al-Alwani, A.B. Mohamad, A.A.H. Kadhum, N.A. Ludin, M.M. Ba-Abbad, Aust. J. Basic Appl. Sci. 8(19), 34–37 (2014)Google Scholar
  57. 57.
    K.S. Sunardi, in Prosiding Pertemuan Ilmiah XXIX Himpunan Fisika Indonesia Jateng & Diy, ed. by M. Yogyakarta (Bagian Penerbitan, Yogyakarta, 2015), pp. 63–65Google Scholar
  58. 58.
    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595–6663 (2010)CrossRefGoogle Scholar
  59. 59.
    H.S. Jung, J.K. Lee, J. Phys. Chem. Lett. 4, 1682–1693 (2013)CrossRefGoogle Scholar
  60. 60.
    N.G. Park, Korean J. Chem. Eng. 27, 375–384 (2010)CrossRefGoogle Scholar
  61. 61.
    K. Thamaphat, P. Limsuwan, B. Ngotawornchai, Kasetsart J. (Nat. Sci.) 42, 357–361 (2008)Google Scholar
  62. 62.
    M. Ba-Abbad, A.H. Kadhum, A. Mohamad, M.S. Takriff, K. Sopian, Int. J. Electrochem. Sci. 7, 4871–4888 (2012)Google Scholar
  63. 63.
    M. Cieślak, D. Puchowicz, I. Kamińska, Fibres Text. East. Eur. 22, 47–53 (2014)Google Scholar
  64. 64.
    Z. Sun, J. Kim, Y. Zhao, F. Bijarbooneh, V. Malgras, D.S. Xue, J. Mater. Chem. 22, 11711–11719 (2012)CrossRefGoogle Scholar
  65. 65.
    N.H. Yusoff, M.F. Rosle, S. Buniran, Adv. Mater. Res. 545, 405–409 (2012)CrossRefGoogle Scholar
  66. 66.
    M.M. Noor, M.H. Buraidah, M.A. Careem, S.R. Majid, A.K. Arof, Electrochim. Acta 121, 159–167 (2014)CrossRefGoogle Scholar
  67. 67.
    Cari, A. Supriyanto, U.M. Fadli, A.B. Prasada, JPCS 710(012027), 1–7 (2016). http://iopscience.iop.org/article/10.1088/1742-6596/710/1/012027/meta
  68. 68.
    S. Shah, M.H. Buraidah, L.P. Teo, M.A. Careem, A.K. Arof, Opt. Quant. Electron. 48, 219 (2016)CrossRefGoogle Scholar
  69. 69.
    J. Cai, Z. Chen, J. Li, Y. Wang, D. Xiang, J. Zhang, H. Li, AIP Adv. 5, 027118 (2015)CrossRefGoogle Scholar
  70. 70.
    H. Hug, M. Bader, P. Mair, T. Glatzel, Appl. Energy 115, 216–225 (2014)CrossRefGoogle Scholar
  71. 71.
    R. Kushwaha, P. Srivastava, L. Bahadur, J. Energy 654953, 1–8 (2013)CrossRefGoogle Scholar
  72. 72.
    M.S. Abdel-Latif, M.B. Abuiriban, T.M. El-Agez, S.A. Taya, Int. J. Renew. Energy Res. 5, 294–298 (2015)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Rahul Zanan
    • 1
  • Kalpana Pawar
    • 2
  • Altafhusain Nadaf
    • 1
  • Habib M. Pathan
    • 2
  1. 1.Department of BotanySavitribai Phule Pune UniversityPuneIndia
  2. 2.Advanced Physics Laboratory, Department of PhysicsSavitribai Phule Pune UniversityPuneIndia

Personalised recommendations