Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 11, pp 11856–11865 | Cite as

Influence of starting powder milling on structural properties, complex impedance, electrical conductivity and permeability of Mn–Zn ferrite

  • M. Milutinov
  • M. V. NikolicEmail author
  • M. D. Lukovic
  • N. Blaz
  • N. Labus
  • Lj. D. Zivanov
  • O. S. Aleksic


In this work we have analyzed how milling starting commercial Mn–Zn powder prior to the sintering process has an influence on electrical conductivity, relative permittivity and complex impedance in the frequency range from 100 Hz to 1 GHz and relative permeability in the frequency range 1–500 MHz. Starting powders additionally were milled for 30, 60, 120 and 240 min followed by sintering disk samples between 900 and 1300 °C. Structural properties were analyzed using XRD and SEM analysis. Milling the starting powder reduced grain and crystallite size, but longer milling leads to agglomeration and consequently an inhomogeneous microstructure that was more expressed at higher sintering temperatures. Milling the starting powder improved relative permeability, reaching a maximum for samples of starting powder milled for 60 min and sintered at 1200 °C.


Ferrite Milling Sinter Temperature Relative Permeability Relative Permittivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to express our gratitude to Dr Miodrag Mitric for XRD measurements. This work has been performed as part of projects III45007 and TR32016 financed by the Ministry for Education, Science and Technological Development of the Republic of Serbia.


  1. 1.
    G. Kogias, V. Tsakaloudi, P. Van der Valk, V. Zaspalis, J. Magn. Magn. Mater. 324, 235 (2012)CrossRefGoogle Scholar
  2. 2.
    H. Waqas, A.H. Qureshi, K. Subhan, M. Shahzad, Ceram. Int. 38, 1235 (2012)CrossRefGoogle Scholar
  3. 3.
    G. Ott, J. Wrba, R. Lucke, J. Magn. Magn. Mater. 254–255, 535 (2003)CrossRefGoogle Scholar
  4. 4.
    J. Kalarus, G. Kogias, D. Holz, V.T. Zaspalis, J. Magn. Magn. Mater. 324, 2788 (2012)CrossRefGoogle Scholar
  5. 5.
    M.-R. Syue, F.-J. Wei, C.-S. Chou, C.-M. Fu, Thin Solid Films 519, 8303 (2011)CrossRefGoogle Scholar
  6. 6.
    A. Noordermeer, M.H.W.M. van Delden, P.T. Por, MTh Rekveldt, D.M. Donnet, J.N. Chapman, J. Appl. Phys. 74, 4095 (1993)Google Scholar
  7. 7.
    H. Su, H. Zhang, X. Tang, X. We, IEEE Trans. Magn. 41, 4225 (2005)CrossRefGoogle Scholar
  8. 8.
    Z.G. Zheng, X.C. Zhong, Y.H. Zhang, H.Y. Yu, D.C. Zeng, J. Alloys Compd. 466, 377 (2008)CrossRefGoogle Scholar
  9. 9.
    D.L. Sekulic, Z.Z. Lazarevic, M.V. Sataric, C.D. Jovalekic, N.Z. Romcevic, J. Mater. Sci.: Mater. Electron. 26, 1291 (2015)Google Scholar
  10. 10.
    S.F. Mansour, M.A. Elkestawy, Ceram. Int. 37, 1175 (2011)CrossRefGoogle Scholar
  11. 11.
    A. C. Larson, R. B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86–748, 2004Google Scholar
  12. 12.
    B.H. Toby, J. Appl. Crystallogr. 34, 210 (2001)CrossRefGoogle Scholar
  13. 13.
    U. König, G. Choi, J. Appl. Crystallogr. 1, 124 (1968)CrossRefGoogle Scholar
  14. 14.
    S.C. Yu, J.S. Lee, S.F. Tung, C.I. Lan, J. Geol. Soc. Chin. (Taiwan) 42, 349 (1999)Google Scholar
  15. 15.
    G. Koops, Phys. Rev. 83, 121 (1951)CrossRefGoogle Scholar
  16. 16.
    Z. Yu, C. Ang, J. Appl. Phys. 91, 794 (2002)CrossRefGoogle Scholar
  17. 17.
    A. Bhaskar, R. Murthy, J. Mater. Sci.: Mater. Electron. 24, 3292 (2013)Google Scholar
  18. 18.
    M.S. Khandekar, R.C. Kambale, J.Y. Patil, Y.D. Kolekar, S.S. Suryavanshi, J. Alloys Compd. 508, 1861 (2011)CrossRefGoogle Scholar
  19. 19.
    R. Martinez, A. Kumar, R. Palai, J.F. Scott, R.S. Katiyar, J. Phys. D Appl. Phys. 44, 105302 (2011)CrossRefGoogle Scholar
  20. 20.
    A.S. Bondarenko, G. Ragoisha, EIS spectrum analyzer (a freeware program for analysis and simulation of impedance spectra),

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. Milutinov
    • 1
  • M. V. Nikolic
    • 2
    Email author
  • M. D. Lukovic
    • 2
  • N. Blaz
    • 1
  • N. Labus
    • 3
  • Lj. D. Zivanov
    • 1
  • O. S. Aleksic
    • 2
  1. 1.Department of Power, Electronics and Communication Engineering, Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia
  3. 3.Institute of Technical Sciences of SASABelgradeSerbia

Personalised recommendations