Tailoring antiferroelectricity with high energy-storage properties in Bi0.5Na0.5TiO3–BaTiO3 ceramics by modulating Bi/Na ratio

  • Qingning Li
  • Changrong ZhouEmail author
  • Jiwen Xu
  • Ling Yang
  • Xin ZhangEmail author
  • Weidong Zeng
  • Changlai Yuan
  • Guohua Chen
  • Guanghui Rao


Antiferroelectric materials form a potential candidate for ceramic-based high energy storage applications owing to their low loss and high energy density. Here, we demonstrate that the antiferroelectric phase with high energy-storage properties in 0.94Bi0.5+x Na0.5−x TiO3–0.06BaTiO3 (BNTx–BT) ceramics at room-temperature is modulated by tailoring compositions. Our results show that the metastable antiferroelectric phase at room-temperature modulated by the Bi/Na ratio with a high excess in Bi3+ and/or a deficiency in Na+, can be induced to the FE phase by applying electrical field, leading to double hysteresis. The high energy storage density W = 1.76 J/cm3 for x = 0.05 BNTx–BT ceramics by modulating Bi/Na ratio is obtained, suggesting a promising candidate lead-free energy-storage material.


BaTiO3 Bismuth Titanate Antiferroelectric Phase High Energy Storage Depolarization Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Part of this work was financially supported by the National Nature Science Foundation of China (11564007, 61561015, and 61361007) and Guangxi Key Laboratory of Information Materials (1310001-Z) and the Natural Science Foundation of Guangxi (Grant Nos. 2012GXNSFGA60002 and 2015GXNSFAA139250).


  1. 1.
    F. MacDougall, R. Jow, J. Ennis, S. Yen, X. Yang, J. Ho, Pulse Power Capacitors, IEEE Power Modulator Conference (2008)Google Scholar
  2. 2.
    A. Chauhan, S. Patel, R. Vaish, Mechanical confinement for improved energy storage in BNT–BT–KNN lead-free ceramic capacitors. AIP Adv. 4, 087106 (2014)CrossRefGoogle Scholar
  3. 3.
    Y. Diab, P. Venet, H. Gualous, G. Rojat, Power Electron. IEEE Trans. 24, 510 (2009)CrossRefGoogle Scholar
  4. 4.
    A.K. Yadav, C. Gautam, Dielectric behavior of perovskite glass ceramics. J. Mater. Sci.: Mater. Electron. 25, 5165–5187 (2014)Google Scholar
  5. 5.
    X. Hao, J. Zhai, L.B. Kong, Z. Xu, A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog. Mater. Sci. 63, 1–57 (2014)CrossRefGoogle Scholar
  6. 6.
    H. Lee, J.R. Kim, M.J. Lanagan, S. Trolier-McKinstry, C.A. Randall, High-energy density dielectrics and capacitors for elevated temperatures: Ca(Zr, Ti)O3. J. Am. Ceram. Soc. 96(4), 1209–1213 (2013)CrossRefGoogle Scholar
  7. 7.
    Z. Hu, B. Ma, R.E. Koritala, U. Balachandran, Temperature-dependent energy storage properties of antiferroelectric Pb0.96La0.04Zr0.98Ti0.02O3 thin films. Appl. Phys. Lett. 104, 263902 (2014)CrossRefGoogle Scholar
  8. 8.
    T. Wang, L. Jin, C. Li, Q. Hu, X. Wei, Relaxor ferroelectric BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc. 98(2), 559–566 (2015)CrossRefGoogle Scholar
  9. 9.
    M.S. Mirshekarloo, K. Yao, T. Sritharan, Large strain and high energy storage density in orthorhombic perovskite (Pb0.97La0.02)(Zr1−x−ySnxTiy)O3 antiferroelectric thin films. Appl. Phys. Lett. 97, 142902 (2010)CrossRefGoogle Scholar
  10. 10.
    J. Parui, S.B. Krupanidhi, Enhancement of charge and energy storage in sol–gel derived pure and La-modified PbZrO3 thin films. Appl. Phys. Lett. 92, 192901 (2008)CrossRefGoogle Scholar
  11. 11.
    F. Zhuo, Y. Li, J. Gao, Q. Yan, Y. Zhang, X. Chu, W. Cao, Effect of A-site La3+ modified on dielectric and energy storage properties in lead zironate Stannate titanate ceramics. Mater. Res. Exp. 045501, 1–11 (2014)Google Scholar
  12. 12.
    X. Hao, Y. Wang, L. Zhang, L. Zhang, S. An, Composition-dependent dielectric and energy-storage properties of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric thick films. Appl. Phys. Lett. 102, 163903 (2013)CrossRefGoogle Scholar
  13. 13.
    J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35(6), 1659–1681 (2015)CrossRefGoogle Scholar
  14. 14.
    J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)CrossRefGoogle Scholar
  15. 15.
    G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Kraink, New ferroelectrics of complex composition. Sov. Phys. Sol. State 2, 2651–2654 (1961)Google Scholar
  16. 16.
    V. Dorcet, G. Trolliard, P. Boullay, Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part I: first order rhombohedral to orthorhombic phase transition. Chem. Mater. 20(15), 5061–5073 (2008)CrossRefGoogle Scholar
  17. 17.
    V. Dorcet, G. Trolliard, P. Boullay, The structural origin of the antiferroelectric properties and relaxor behavior of Na0.5Bi0.5TiO3. J. Magn. Magn. Mater. 321(11), 1758–1761 (2009)CrossRefGoogle Scholar
  18. 18.
    B.W. Eerd, D. Damjanovic, N. Klein, N. Setter, J. Trodahl, Structural complexity of (Na0.5Bi0.5)TiO3–BaTiO3 as revealed by Raman spectroscopy. Phys. Rev. B 82, 104112 (2010)CrossRefGoogle Scholar
  19. 19.
    W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.-J. Kleebe, A.J. Bell, J. Rödel, On the phase indentity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3–6 mol% BaTiO3. J. Appl. Phys. 110, 074106 (2011)CrossRefGoogle Scholar
  20. 20.
    C. Ma, H. Guo, X. Tan, New phase boundary in (Bi1/2Na1/2)TiO3–BaTiO3 revealed via a novel method of electron difrraction analysis. Adv. Funct. Mater. 23, 5261 (2013)CrossRefGoogle Scholar
  21. 21.
    R. Garg, B.N. Rao, A. Senyshyn, P.S.R. Krishna, R. Ranjan, Lead-free piezoelectric system (Na0.5Bi0.5)TiO3–BaTiO3: equilibrium structures and irreversible structural transformation driven by electric field and mechanical impact. Phys. Rev. B 88, 014103 (2013)CrossRefGoogle Scholar
  22. 22.
    G. Picht, J. Töpfer, E. Hennig, Structural properties of (Bi0.5Na0.5)1−xBaxTiO3 lead-Free piezoelectric ceramics. J. Eur. Ceram. Soc. 30, 3445–3450 (2010)CrossRefGoogle Scholar
  23. 23.
    C. Ma, X. Tan, Phase diagram of unpoled lead-free (1−x)(Bi1/2Na1/2)TiO3− xBaTiO3 ceramics. Solid State Commun. 150(33–34), 1497–1500 (2010)CrossRefGoogle Scholar
  24. 24.
    Q. Xu, D.P. Huang, M. Chen, W. Chen, H.X. Liu, B.H. Kim, Effect of bismuth excess on ferroelectric and piezoelectric properties of a (Na0.5Bi0.5)TiO3–BaTiO3 composition near the morphotropic phase boundary. J. Alloys Compd. 471(1–2), 310–316 (2009)CrossRefGoogle Scholar
  25. 25.
    Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, H.H. Chong, T.G. Park, D. Do, S.S. Kim, Effects of Na nonstoichiometry in (Bi0.5Na0.5+x)TiO3 ceramics. Appl. Phys. Lett. 96(2), 022901 (2010)CrossRefGoogle Scholar
  26. 26.
    Y. Guo, M. Gu, H. Luo, Y. Liu, R.L. Withers, Composition-induced antiferroelectric phase and giant strain in lead-free (Nay, Biz)Ti1−xO3(1−x)xBaTiO3 ceramics. Phys. Rev. B 83, 054118 (2011)CrossRefGoogle Scholar
  27. 27.
    C. Ma, X. Tan, In situ transmission electron microscopy study on the phase transitions in lead-free (1−x)(Bi1/2Na1/2)TiO3xBaTiO3 ceramics. J. Am. Ceram. Soc. 94(11), 4040–4044 (2011)CrossRefGoogle Scholar
  28. 28.
    S. Zhang, A.B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel, D. Damjanovic, High-strain lead-free antiferroelectric electrostrictors. Adv. Mater. 21(46), 4716–4720 (2009)CrossRefGoogle Scholar
  29. 29.
    H. Borkar, V.N. Singh, B.P. Sing, M. Tomar, V. Gupta, A. Kumar, Room temperature lead-Free relaxor-antiferroelectric electroceramics for energy storage application. RSC Adv. 4, 22840–22847 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Qingning Li
    • 1
  • Changrong Zhou
    • 1
    Email author
  • Jiwen Xu
    • 1
  • Ling Yang
    • 1
  • Xin Zhang
    • 1
    Email author
  • Weidong Zeng
    • 1
  • Changlai Yuan
    • 1
  • Guohua Chen
    • 1
  • Guanghui Rao
    • 1
  1. 1.School of Material Science and EngineeringGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations