Compositional variation of structural, electrical and magnetic properties of Dy substituted Ni–Co spinel ferrite

  • A. A. Kadam
  • K. Y. Rajpure


In the present work nanocrystalline dysprosium substituted Ni0.8Co0.2Fe2−xDyxO4 (x = 0.00, 0.025, 0.050, 0.075 & 0.1) ferrite system was synthesized by the solution combustion method. The phase formation has been confirmed by Reitveld analysis of XRD patterns, which is a characteristic of spinel ferrite with most intense (311) peak. The bond lengths and site radii of tetrahedral and octahedral sites are found to increase with increase in Dy content. IR measurements showed two prominent bands which are common characteristics of spinel ferrite. The surface morphology shows spherical grains of increasing size with increase in Dy content. The dielectric measurements show the usual dielectric dispersion due to space charge polarization. The electrical resistivity of Ni–Co ferrites is found to increase with Dy content. This can be explained on the basis of formation of DyFeO3 secondary phase along with spinel lattice. Complex impedance spectra show incomplete semicircles due to the high resistance values at low frequency. Magnetic measurements reveal low coercive field with increase in Dy content. Low coercive fields suggest the use of these materials in data storage and magnetic shielding devices.


Ferrite Octahedral Site Dysprosium Cation Distribution Spinel Ferrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors are very much thankful to Physics Instrumentation Facility Centre (PIFC) and DST (Project No. SB/S2/CMP-041/2013) for the financial support.


  1. 1.
    V.G. Harris, IEEE Trans. Magn. 48, 1075–1104 (2012)CrossRefGoogle Scholar
  2. 2.
    K. Kamala Bharathi, G. Markandeyulu, C.V. Ramana, J. Phys. Chem. C 115, 554–560 (2011)CrossRefGoogle Scholar
  3. 3.
    B.I. Kharisov, H.V.R. Dias, O.V. Kharissova, Arab. J. Chem. (2014). doi: 10.1016/j.arabjc.2014.10.049
  4. 4.
    V. Naidu, S. Gayathri Devi, R. Legadevi, P. Lakshmi, Int. J. Comput. Appl. 48, 10–14 (2012)Google Scholar
  5. 5.
    S. Singhal, J. Singh, S.K. Barthwal, K. Chandra, J. Solid State Chem. 178, 3183–3189 (2005)CrossRefGoogle Scholar
  6. 6.
    B.P. Jacob, S. Thankachan, SXavier, EM Mohammed. Phys. Scr. 84, 045702–045706 (2011)CrossRefGoogle Scholar
  7. 7.
    T.J. Shinde, A.B. Gadkari, P.N. Vasambekar, J. Mater. Sci.: Mater. Electron. 23, 697–705 (2012)Google Scholar
  8. 8.
    S. Dwevedi, K.K. Bharathi, G. Markandeyulu, IEEE Trans. Magn. 45, 4253–4256 (2009)CrossRefGoogle Scholar
  9. 9.
    J. Atulasimha, A.B. Flatau, Smart Mater. Struct. 20, 043001–043015 (2011)CrossRefGoogle Scholar
  10. 10.
    A.A. Kadam, S.S. Shinde, S.P. Yadav, P.S. Patil, K.Y. Rajpure, J. Magn. Magn. Mater. 329, 59–64 (2013)CrossRefGoogle Scholar
  11. 11.
    J.-H. Kim, S.-T. Myung, C.S. Yoon, S.G. Kang, Y.-K. Sun, Chem. Mater. 16, 906–914 (2004)CrossRefGoogle Scholar
  12. 12.
    S. Yang, S.I. Troyanov, A.A. Popov, M. Krause, L. Dunsch, J. Am. Chem. Soc. 128, 16733–16739 (2006)CrossRefGoogle Scholar
  13. 13.
    A. Goldman, Modern Ferrite Technology, 2nd edn. (Springer, New York, 2006)Google Scholar
  14. 14.
    K.K. Bharathi, R.S. Vemuri, C.V. Ramana, Chem. Phys. Lett. 504, 202–205 (2011)CrossRefGoogle Scholar
  15. 15.
    J. Song , L. Wang, Q. Zhang, N. Xu, J Rare Earth 28, 451–455 (2010)CrossRefGoogle Scholar
  16. 16.
    L.C. Varanda, M.P. Morales, G.F. Goya, M. Imaizumi, C.J. Serna, M. Jafelicci Jr., Mater. Sci. Eng., B 112, 188–193 (2004)CrossRefGoogle Scholar
  17. 17.
    M. Al-haj, J. Magn. Magn. Mater. 299, 435–439 (2006)CrossRefGoogle Scholar
  18. 18.
    E.E. Sileo, R. Rotelo, S.E. Jacobo, Phys. B 320, 257–260 (2002)CrossRefGoogle Scholar
  19. 19.
    S.E. Jacobo, W.G. Fano, A.C. Razzitte, Phys. B 320, 261–263 (2002)CrossRefGoogle Scholar
  20. 20.
    E.E. Sileoa, S.E. Jacobo, Phys. B 354, 241–245 (2004)CrossRefGoogle Scholar
  21. 21.
    A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, Mater. Chem. Phys. 114, 505–510 (2009)CrossRefGoogle Scholar
  22. 22.
    Q.M. Wei, J.B. Li, Y.J. Chen, J. Mater. Sci. 36, 5115–5118 (2001)CrossRefGoogle Scholar
  23. 23.
    S.A. Mazen, S.F. Mansour, E. Dhahri, M.H. Zaki, T.A. Elmosalami, J. Alloys Compd. 470, 294–300 (2009)CrossRefGoogle Scholar
  24. 24.
    M. Ishaque, M.U. Islam, M. Azhar Khan, I.Z. Rahman, A. Genson, S. Hampshire, Phys. B 405, 1532–1540 (2010)CrossRefGoogle Scholar
  25. 25.
    V.S. Sawant, A.A. Bagade, S.V. Mohite, K.Y. Rajpure, Phys. B 451, 39–42 (2014)CrossRefGoogle Scholar
  26. 26.
    P. Sivagurunathan, S.R. Gibin, J. Mater. Sci.: Mater. Electron. 27, 2601–2607 (2016)Google Scholar
  27. 27.
    A. Tataroglu, S. Altındal, M. Bulbul, Microelectron. Eng. 81, 140–149 (2005)CrossRefGoogle Scholar
  28. 28.
    S.S. Bellad, B.K. Chougule, Mater. Chem. Phys. 66, 58–63 (2000)CrossRefGoogle Scholar
  29. 29.
    R.V. Mangalaraja, S. Ananthakumar, P. Manohar, F.D. Gnanam, J. Magn. Magn. Mater. 253, 56–64 (2002)CrossRefGoogle Scholar
  30. 30.
    E. Melagiriyappa, H.S. Jayanna, B.K. Chougule, Mater. Chem. Phys. 112, 68–73 (2008)CrossRefGoogle Scholar
  31. 31.
    A.D. Sheikh, V.L. Mathe, J. Mater. Sci. 43, 2018–2025 (2008)CrossRefGoogle Scholar
  32. 32.
    A.K. Nikumbh, R.A. Pawar, D.V. Nighot, G.S. Gugale, M.D. Sangale, M.B. Khanvilkar, A.V. Nagawade, J. Magn. Magn. Mater. 355, 201–209 (2014)CrossRefGoogle Scholar
  33. 33.
    N.N. Rezlescu, E. Rezlescu, Solid State Commun. 88, 139–141 (1993)CrossRefGoogle Scholar
  34. 34.
    A.A. Bagade, V.V. Ganbavle, K.Y. Rajpure, J. Mater. Eng. Perform. 23, 2787–2794 (2014)CrossRefGoogle Scholar
  35. 35.
    D. Kim, B. Revaz, B.L. Zink, F. Hellman, Phys. Rev. Lett. 89, 227202–227204 (2002)CrossRefGoogle Scholar
  36. 36.
    M. El-Shabasy, J. Magn. Magn. Mater. 172, 188–192 (1997)CrossRefGoogle Scholar
  37. 37.
    Haitao Ye, R.B. Jackman, P. Hing, J. Appl. Phys. 94, 7878–7882 (2003)CrossRefGoogle Scholar
  38. 38.
    V.S. Sawant, A.A. Bagade, K.Y. Rajpure, Phys. B 474, 47–52 (2015)CrossRefGoogle Scholar
  39. 39.
    J. Wang, C. Zeng, Z. Peng, Q. Chen, Phys. B 349, 124–128 (2004)CrossRefGoogle Scholar
  40. 40.
    M.A. Ahmeda, S.T. Bishay, J. Magn. Magn. Mater. 279, 178–183 (2004)CrossRefGoogle Scholar
  41. 41.
    G. Bulai, L. Diamandescu, I. Dumitru, S. Gurlui, M. Feder, O.F. Caltun, J. Magn. Magn. Mater. 390, 123–131 (2015)CrossRefGoogle Scholar
  42. 42.
    A. Pradeep, P. Priyadharsini, G. Chandrasekaran, J. Magn. Magn. Mater. 320, 2774–2779 (2008)CrossRefGoogle Scholar
  43. 43.
    R.C. Kambale, K.M. Song, Y.S. Koo, N. Hur, J. Appl. Phys. 110, 053910–053917 (2011)CrossRefGoogle Scholar
  44. 44.
    S.S. Jadhav, S.E. Shirsath, S.M. Patange, K.M. Jadhav, J. Appl. Phys. 108, 093920–093926 (2010)CrossRefGoogle Scholar
  45. 45.
    P.A. Shaikh, R.C. Kambale, A.V. Rao, Y.D. Kolekar, J. Magn. Magn. Mater. 322, 718–726 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physics, Electrochemical Materials LaboratoryShivaji UniversityKolhapurIndia

Personalised recommendations