Advertisement

Optimizing the performance of inverted type hybrid organic solar cell based on ZnO/P3HT with various polymer deposition parameters

  • Nasehah Syamin Sabri
  • Chi Chin Yap
  • Muhammad Yahaya
  • Mohammad Hafizuddin Haji Jumali
  • Muhamad Mat Salleh
Article
  • 146 Downloads

Abstract

Various polymer deposition parameters have been investigated to improve the overall performance of the inverted type hybrid organic solar cells based on zinc oxide (ZnO)/poly(3-hexylthiophene) (P3HT). The polymer was deposited onto fluorine-doped tin oxide/ZnO nanorod arrays (NRAs) substrates via spin coating technique and followed by deposition of silver (Ag) using electron gun evaporation technique to build the devices. The objective of this work is to achieve the optimum device performance by selecting the best polymer concentration (25–40 mg/ml), spin coating speed (500–2000 rpm) and diluted polymer concentration (1–4 mg/ml) for ZnO NRAs surface modification. Experimental results showed that the device with P3HT concentration of 35 mg/ml, spin coating speed of 1000 rpm and ZnO NRAs surface modification with 1 mg/ml diluted P3HT solution exhibited the highest power conversion efficiency of 0.27 %. The surface roughness, P3HT top layer thickness and P3HT infiltration contributed to the significant photovoltaic performance improvement.

Keywords

Power Conversion Efficiency Photovoltaic Performance High Power Conversion Efficiency Exciton Dissociation P3HT Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been conducted under the financial support of Ministry of Higher Education Malaysia under Research Grant FRGS/2/2013/SG02/UKM/02/6. The authors would like to thank Mr. Lahudi from the School of Applied Physics, Universiti Kebangsaan Malaysia for Ag via e-gun evaporation.

References

  1. 1.
    M.C. Scharber, N.S. Sariciftci, 2013 Prog. Polym. Sci. 38, 1929–1940 (2013)Google Scholar
  2. 2.
    F. Silvestri, M.D. Irwin, L. Beverina, A. Facchetti, G.A. Pagani, T.J. Marks, J. Am. Chem. Soc. 130, 17640–17641 (2008)CrossRefGoogle Scholar
  3. 3.
    O. Dhibi, A. Ltaief, A. Bouazizi, Mater. Sci. Semicond. Process. 24, 173–180 (2014)CrossRefGoogle Scholar
  4. 4.
    X. Wang, F. Chen, J. Mater. Sci. Mater. Electron. 26, 1125–1128 (2014)CrossRefGoogle Scholar
  5. 5.
    L. Baeten, B. Conings, H.G. Boyen, J. D’haen, A. Hardy, M. D’olieslaeger, J.V. Manca, M.K. Van-Bael, Adv. Mater. 23, 2802–2805 (2011)CrossRefGoogle Scholar
  6. 6.
    K. Takanezawa, K. Hirota, Q.S. Wei, K. Tajima, K. Hashimoto, J. Phys. Chem. C 111, 7218–7223 (2007)CrossRefGoogle Scholar
  7. 7.
    S.H. Ko, I. Park, H. Pan, N. Misra, M.S. Rogers, C.P. Grigoropoulos, A.P. Pisano, Appl. Phys. Lett. 92, 154102 (2008)CrossRefGoogle Scholar
  8. 8.
    J. Wang, H. Fu, L. Tan, Y. Chen, Z. He, J. Mater. Sci. Mater. Electron. 27, 3557–3564 (2015)CrossRefGoogle Scholar
  9. 9.
    P. Ruankham, S. Yoshikawa, T. Sagawa, Phys. Chem. Chem. Phys. 15, 9516 (2013)CrossRefGoogle Scholar
  10. 10.
    J. Huang, Z. Yin, Q. Zheng, Energy Environ. Sci. 4, 3861–3877 (2011)CrossRefGoogle Scholar
  11. 11.
    P. Ruankham, T. Sagawa, H. Sakaguchi, S. Yoshikawa, J. Mater. Chem. 21, 9710–9715 (2011)CrossRefGoogle Scholar
  12. 12.
    C.Y. Chou, J.S. Huang, C.H. Wu, C.Y. Lee, C.F. Lin, Sol. Energy Mater. Sol. Cells 93, 1608–1612 (2009)CrossRefGoogle Scholar
  13. 13.
    L.E. Lim, C.C. Yap, M. Yahaya, M.M. Salleh, J. Phys. Conf. Ser. 431, 012017 (2013)CrossRefGoogle Scholar
  14. 14.
    M.-J. Jin, S.-D. Lee, K.-S. Shin, S.-W. Jeong, D.H. Yoon, D. Jeon, I.-H. Lee, D.K. Lee, S.-W. Kim, J. Nanosci. Nanotechnol. 9, 1–4 (2009)CrossRefGoogle Scholar
  15. 15.
    C.-T. Lin, C.-H. Hsu, C.-H. Lee, W.-J. Wu, J. Nanotechnol. 2011, 142890 (2011)CrossRefGoogle Scholar
  16. 16.
    Y. Qu, L. Li, G. Lu, X. Zhou, Q. Su, W. Xu, S. Li, J. Zhang, X. Yang, Polym. Chem. 3, 3301–3307 (2012)CrossRefGoogle Scholar
  17. 17.
    A.J. Moulé, J.B. Bonekamp, K. Meerholza, J. Appl. Phys. 100(1–7), 094503 (2006)CrossRefGoogle Scholar
  18. 18.
    S. Lattante, Electron. 3, 132–164 (2014)CrossRefGoogle Scholar
  19. 19.
    R.T. Ginting, C.C. Yap, M. Yahaya, M.M. Salleh, Int. J. Photoenergy 2013, 503715 (2013)CrossRefGoogle Scholar
  20. 20.
    J. Ajuria, I. Etxebarria, E. Azaceta, R. Tena-Zaera, N. Fernández-Montcada, E. Palomares, R. Pacios, Phys. Chem. Chem. Phys. 13, 20871–20876 (2011)CrossRefGoogle Scholar
  21. 21.
    A. Guerrero, T. Ripolles-Sanchis, P.B. Pablo, G. Garcia-Belmonte, Org. Electron. 13, 2326–2332 (2012)CrossRefGoogle Scholar
  22. 22.
    X. Zheng, R.-H. Horng, D.-S. Wuu, M.-T. Chu, W.-Y. Liao, M.-H. Wu, R.-M. Lin, Y.-C. Lu, Appl. Phys. Lett. 93(1–3), 261108 (2008)CrossRefGoogle Scholar
  23. 23.
    S.D. Oosterhout, L.J.A. Koster, S.S. Van Bavel, J. Loos, O. Stenzel, R. Thiedmann, V. Schmidt, B. Campo, T.J. Cleij, L. Lutzen, D. Vanderzande, M.M. Wienk, R.A.J. Janssen, Adv. Energy Mater. 1, 90–96 (2011)CrossRefGoogle Scholar
  24. 24.
    H.A. Badran, K.I. Ajeel, H.G. Lazim, Mater. Res. Bull. 76, 422–430 (2016)CrossRefGoogle Scholar
  25. 25.
    C.G. Allen, D.J. Baker, T.M. Brenner, C.C. Weigand, J.M. Albin, K.X. Steirer, D.C. Olson, C. Ladam, D.S. Ginley, R.T. Collins, T.E. Furtak, J. Phys. Chem. C 116, 8872–8880 (2012)CrossRefGoogle Scholar
  26. 26.
    Z. Peng, Q. Wenxiu, Z. Jin, Y. Yuan, L. Yulong, Y. Xingtian, K. Lingbing, H. Xiao, Sci. China Phys. Mech. Astron. 57, 1289–1298 (2014)CrossRefGoogle Scholar
  27. 27.
    K. Lee, B. Kumar, H.-J. Park, S.-W. Kim, Nanoscale Res. Lett. 5, 1908–1912 (2010)CrossRefGoogle Scholar
  28. 28.
    P. Ravirajan, A.M. Peiro, M.K. Nazeeruddin, M. Graetzel, D.D.C. Bradley, J.R. Durrant, J. Nelson, J. Phys. Chem. B 110, 7635–7639 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of Science and Technology, School of Applied PhysicsUniversiti Kebangsaan Malaysia (UKM)BangiMalaysia
  2. 2.Institute of Microengineering and Nanoelectronics (IMEN)Universiti Kebangsaan Malaysia (UKM)BangiMalaysia

Personalised recommendations