A multisource energy harvesting utilizing highly efficient ferroelectric PMN-PT single crystal

  • Almuatasim AlomariEmail author
  • Ashok Batra
  • Mohan Aggarwal
  • C. R. Bowen


This paper demonstrates a multi-source energy harvester that is able to utilize simultaneously both piezoelectric and pyroelectric effects in lead magnesium niobate-lead titanate (PMN-PT) single crystal. The paper presents a study of PMN-PT single crystal with a (67:33) composition grown in our laboratory via a vertical gradient freeze method without any flux. The performance of the piezoelectric and pyroelectric energy harvester using unimorph device structure was evaluated via modeling and experiment. The theoretical study was implemented based on a distributed parameter electromechanical model and the modelling procedure was approximated using finite element analysis to predict the electromechanical behavior of the harvester. The maximum power density at a resonance frequency of 50 Hz and optimum resistance of 2 MΩ was 16.7 nW/(g2 cm3) under a 1 g acceleration of vibration. The measured values of electrical output parameters were in good agreement with theoretical and modelling results using MATLAB and COMSOL Multiphysics, respectively. By using the pyroelectric effect along with the piezoelectric effect, the output voltage of the energy harvester was found to be enhanced at the optimum resistance and specific frequency values. It was noticed that the output voltage was increased monotonically with temperature-difference (ΔT) and reaches up to 180 % of its original value under temperature difference of 1.7 °C at a frequency value of 49 Hz.


Energy Harvester Maximum Power Density Piezoelectric Energy Pyroelectric Coefficient Piezoelectric Energy Harvester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge support for this work through the National Science Foundation (NSF) RISE Grant Number HRD 1546965. Authors thank Dr. Chance M. Glenn, Dean, College of Engineering, Technology, and Physical Sciences. Special thanks to Mr. Garland Sharp for fabrication of the cantilever beam.


  1. 1.
    Y.K. Tan, S.K. Panda, I.E.E.E. Trans, Ind. Electron. 58, 4424 (2011)CrossRefGoogle Scholar
  2. 2.
    K.A. Cook-Chennault, N. Thambi, A.M. Sastry, Smart Mater. Struct. 17, 043001 (2008)CrossRefGoogle Scholar
  3. 3.
    C.R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhan, R. Vaish, Energy Environ. Sci. 7, 3836 (2014)CrossRefGoogle Scholar
  4. 4.
    S. Roundy, P.K. Wright, Smart Mater. Struct. 13, 1131 (2004)CrossRefGoogle Scholar
  5. 5.
    J.B. Ihn, F.K. Chang, Smart Mater. Struct. 13, 609 (2004)CrossRefGoogle Scholar
  6. 6.
    S. Priya, C.T. Chen, D. Fye, J. Zahnd, Jpn. J. Appl. Phys. 44, L104 (2004)CrossRefGoogle Scholar
  7. 7.
    V. Giurgiutiu, J. Intell. Mater. Syst. Struct. 16, 291 (2005)CrossRefGoogle Scholar
  8. 8.
    A. Badel, A. Benayad, E. Lefeuvre, L. Lebrun, C. Richard, D. Guyomar, I.E.E.E. Trans, Ultrason. Ferroelectr. Freq. Control 53, 673 (2006)Google Scholar
  9. 9.
    K. Ren, Y. Liu, X. Geng, H.F. Hofmann, Q.M. Zhang, I.E.E.E. Trans, Ultrason. Ferroelectr. Freq. Control 53, 631 (2006)CrossRefGoogle Scholar
  10. 10.
    H.J. Song, Y.T. Choi, G. Wang, N.M. Wereley, J. Mech. Des. 131, 091008 (2009)CrossRefGoogle Scholar
  11. 11.
    K.B. Kim, D.K. Hsu, B. Ahn, Y.G. Kim, D.J. Barnard, Ultrasonics 50, 790 (2010)CrossRefGoogle Scholar
  12. 12.
    R. Chen, N.E. Cabrera-Munoz, K.H. Lam, H.S. Hsu, F. Zheng, Q. Zhou, K.K. Shung, I.E.E.E. Trans, Ultrason. Ferroelect. Freq. Control 61, 1033 (2014)CrossRefGoogle Scholar
  13. 13.
    G.T. Hwang, H. Park, J.H. Lee, S. Oh, K.I. Park, M. Byun, H. Park, G. Ahn, C.K. Jeong, K. No, H. Kwon, Adv. Mater. 26, 4880 (2014)CrossRefGoogle Scholar
  14. 14.
    R.J. Kazys, R. Sliteris, J. Sestoke, Phys. Procedia 70, 896 (2015)CrossRefGoogle Scholar
  15. 15.
    S.W. Choi, R.T. Shrout, S.J. Jang, A.S. Bhalla, Ferroelectrics 100, 29 (1989)CrossRefGoogle Scholar
  16. 16.
    Y. Bai, Z.Y. Cheng, V. Bharti, H.S. Xu, Q.M. Zhang, Appl. Phys. Lett. 76, 3804 (2000)CrossRefGoogle Scholar
  17. 17.
    K.T. Zawilski, M.C.C. Custodio, R.C. DeMattei, S.G. Lee, R.G. Monteiro, H. Odagawa, R.S. Feigelson, J. Cryst. Growth 258, 353 (2003)CrossRefGoogle Scholar
  18. 18.
    K. Uchino, Ferroelectric Devices, 2nd edn. (New York, 2009)Google Scholar
  19. 19.
    H. Cao, V.H. Schmidt, R. Zhang, W. Cao, H. Luo, J. Appl. Phys. 96, 549 (2004)CrossRefGoogle Scholar
  20. 20.
    E.M. Seung, K.L. Sang, L. Hyung-Kun, L. Jae-Woo, Y. Yil-Suk, K. Jongdae, J. Korean Phys. Soc. 58, 645 (2011)CrossRefGoogle Scholar
  21. 21.
    G. Tang, B. Yang, J.Q. Liu, B. Xu, H.Y. Zhu, C.S. Yang, Sens. Actuator A-Phys. 205, 150 (2014)CrossRefGoogle Scholar
  22. 22.
    Q.M. Wang, C. Sun, L. Qin, J. Intell. Mater. Syst. Struct. 20, 559 (2008)CrossRefGoogle Scholar
  23. 23.
    H.J. Song, Y.T. Choi, G. Wang, N.M. Wereley, J. Mech. Des. 131, 091008 (2009)CrossRefGoogle Scholar
  24. 24.
    B. Ren, S.W. Or, Y. Zhang, Q. Zhang, X. Li, J. Jiao, W. Wang, D.A. Liu, X. Zhao, H. Luo, Appl. Phys. Lett. 96, 083502 (2010)CrossRefGoogle Scholar
  25. 25.
    S.E. Moon, S.Q. Lee, S.K. Lee, Y.G. Lee, Y.S. Yang, K.H. Park, J. Kim, ETRI J. 31, 688 (2009)CrossRefGoogle Scholar
  26. 26.
    L. Zhou, J. Sun, X.J. Zheng, S.F. Deng, J.H. Zhao, S.T. Peng, Y. Zhang, X.Y. Wang, H.B. Cheng, Sens. Actuators A Phys. 179, 185 (2012)CrossRefGoogle Scholar
  27. 27.
    A. Erturk, D.J. Inman, J. Vib. Acoust. 130, 041002 (2008)CrossRefGoogle Scholar
  28. 28.
    A. Erturk, O. Bilgen, D.J. Inman, Appl. Phys. Lett. 93, 224102 (2008)CrossRefGoogle Scholar
  29. 29.
    Y. Guo, H. Xu, H. Luo, G. Xu, Z. Yin, J. Cryst. Growth 226, 111–116 (2001)CrossRefGoogle Scholar
  30. 30.
    B. Noheda, Curr. Opin. Solid State Mater. Sci. 6, 27–34 (2002)CrossRefGoogle Scholar
  31. 31.
    Z. Duan, G. Xu, X. Wang, D. Yang, J. Cryst. Growth 275, e1907 (2005)CrossRefGoogle Scholar
  32. 32.
    T.F. Zhang, X.G. Tang, Q.X. Liu, Y.P. Jiang, X.X. Huang, Q.F. Zhou, J. Phys. D Appl. Phys. 49, 095302 (2016)CrossRefGoogle Scholar
  33. 33.
    H. Li, C. Tian, Z.D. Deng, Appl. Phys. Rev. 1, 041301 (2014)CrossRefGoogle Scholar
  34. 34.
    S.G. Kim, S. Priya, I. Kanno, MRS Bull. 37, 1039 (2012)CrossRefGoogle Scholar
  35. 35.
    X. Xiong, S.O. Oyadiji, J. Intell. Mater. Syst. Struct. 26, 2216 (2015)CrossRefGoogle Scholar
  36. 36.
    S. Priya, Modeling of electric energy harvesting using piezoelectric windmill. Appl. Phys. Lett. 87, 184101 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Almuatasim Alomari
    • 1
    Email author
  • Ashok Batra
    • 1
  • Mohan Aggarwal
    • 1
  • C. R. Bowen
    • 2
  1. 1.Department of Physics, Chemistry, and Mathematics (Materials Science Group-Clean Energy Laboratory) College of Engineering, Technology and Physical SciencesAlabama A&M UniversityNormalUSA
  2. 2.Department of Mechanical EngineeringUniversity of BathBathUK

Personalised recommendations