Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 9, pp 9962–9975 | Cite as

Photo-degradation of azo dyes: photo catalyst and magnetic investigation of CuFe2O4–TiO2 nanoparticles and nanocomposites

  • Shamin Masoumi
  • Gholamreza Nabiyouni
  • Davood Ghanbari
Article

Abstract

CuFe2O4 nanoparticles were first synthesized via a fast and simple precipitation method. Then CuFe2O4–TiO2 nanocomposites were prepared using sol–gel method. The prepared products were characterized by X-ray diffraction, scanning electron microscopy, and fourier transform infrared spectroscopy. Alternating gradient force magnetometer was used to study the magnetic property of the products. The results illustrated either superparamagnetic or ferromagnetic behaviour of CuFe2O4 nanoparticles. The photo-catalytic behaviour of CuFe2O4–TiO2 nanocomposites was evaluated using the degradation of four various azo dyes under ultraviolet light irradiation. The results show that the prepared nanocomposites are applicable for magnetic and photo-catalytic performance.

Keywords

TiO2 Ferrite CuFe2O4 Titanium Tetra Isopropoxide Copper Ferrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been supported financially by Arak University Research Council (AURC) under the Grant number of 95-148 [95-2-13]. The authors acknowledge AURC for the financial support.

References

  1. 1.
    C. Munteanu, M. Caldararu, D. Gingasu, M. Feder, L. Diamandescu, N.I. Ionescu, React. Kinet. Mech. Catal. 104, 357 (2011)CrossRefGoogle Scholar
  2. 2.
    C. Reitz, C. Suchomski, J. Haetge, T. Leichtweiss, Z. Jaglicic, I. Djerdjc, T. Brezesinski, Chem. Commun. 48, 4471 (2012)CrossRefGoogle Scholar
  3. 3.
    G. Nabiyouni, D. Ghanbari, A. Yousofnejad, M. Seraj, Z. Mirdamadian, J. Nano Struct. 3, 155 (2013)Google Scholar
  4. 4.
    A. Bagheri Ghomi, V. Ashayeri, Iran. J. Catal. 3(3), 135 (2012)Google Scholar
  5. 5.
    G.R. Kumar, K.V. Kumar, Y.C. Venudhar, Mater. Sci. Appl. 3, 87 (2012)Google Scholar
  6. 6.
    A. Goyal, S. Bansal, S. Singhal, Int. J. Hydrog. Energy 39, 4895 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Singh, B.C. Yadav, V.D. Gupta, P.K. Dwivedi, Mater. Res. Bull. 47, 3538 (2012)CrossRefGoogle Scholar
  8. 8.
    J. Feng, L. Su, Y. Ma, C. Ren, Q. Guo, X. Chen, Chem. Eng. J. 221, 16 (2013)CrossRefGoogle Scholar
  9. 9.
    L.B. Zakiyah, E. Saion, N.M. Al-Hada, E. Gharibshahi, A. Salem, N. Soltani, S. Gene, Mater. Sci. Semicond. Process. 40, 564 (2015)CrossRefGoogle Scholar
  10. 10.
    W. Ponhan, S. Maensiri, Solid State Sci. 11, 479 (2009)CrossRefGoogle Scholar
  11. 11.
    R. Köferstein, T. Walther, D. Hesse, S.G. Ebbinghaus, J. Solid State Chem. 213, 57 (2014)CrossRefGoogle Scholar
  12. 12.
    M. Feng, A. Yang, X. Zuo, C. Vittoria, V.G. Harris, J. Appl. Phys. 09A521, 107 (2010)Google Scholar
  13. 13.
    M.R. Uddin, M.R. Khan, M.W. Rahman, A. Yousuf, C.K. Cheng, React. Kinet. Mech. Cat. 116, 589 (2015) doi: 10.1007/s11144-015-0911-7
  14. 14.
    H. Yang, J. Yan, Z. Lu, X. Chenga, Y. Tanga, J. Alloys Compd. 476, 715 (2009)CrossRefGoogle Scholar
  15. 15.
    M.G. Naseri, E.B. Saion, H.A. Ahangar, A.H. Shaari, Mater. Res. Bull. 48, 1439 (2013)CrossRefGoogle Scholar
  16. 16.
    X. Zuo, J. Appl. Phys. 99, 909 (2006)CrossRefGoogle Scholar
  17. 17.
    M.J. Iqbal, N. Yaqub, B. Sepiol, B. Ismail, Mater. Res. Bull. 46, 1837 (2011)CrossRefGoogle Scholar
  18. 18.
    M.M. Rashad, R.M. Mohamed, M.A. Ibrahim, L.F.M. Ismaild, E.A. Abdel-Aal, Adv. Powder Technol. 23, 315 (2012)CrossRefGoogle Scholar
  19. 19.
    N.M. Deraz, J. Alloys Compds. 501, 317 (2010)CrossRefGoogle Scholar
  20. 20.
    M. Masjedi-Arani, M. Salavati-Niasari, D. Ghanbari, G. Nabiyouni, Ceram. Int. 40, 495 (2014)CrossRefGoogle Scholar
  21. 21.
    J. Saffari, N. Mir, D. Ghanbari, K. Khandan-Barani, A. Hassanabadi, M.R. Hosseini-Tabatabaei, J. Mater. Sci. Mater. Electron. 26, 9591 (2015)CrossRefGoogle Scholar
  22. 22.
    A. Esmaeili-Bafghi-Karimabad, D. Ghanbari, M. Salavati-Niasari, L. Nejati-Moghadam, S. Gholamrezaei, J. Mater. Sci. Mater. Electron. 26, 6970 (2015)CrossRefGoogle Scholar
  23. 23.
    M. Goudarzi, D. Ghanbari, M. Salavati-Niasari, A. Ahmadi, J. Clust. Sci. 27, 25 (2016)CrossRefGoogle Scholar
  24. 24.
    J. Saffari, H. Shams, D. Ghanbari, A. Esmaeili, J. Clust. Sci. 25, 1225 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Fedailaine, S. Berkani, M. Trari, Korean J. Chem. Eng. 32(4), 1 (2015)Google Scholar
  26. 26.
    A. Kezzim, N. Nasrallah, A. Abdi, M. Trari, Energy Convers. Manag. 52, 2800 (2011)CrossRefGoogle Scholar
  27. 27.
    M. Rahim, M.R. Khan, M. Wasikur, A. Yousuf, C.K. Cheng, React. Kinet. Mech. Catal. 116, 589 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shamin Masoumi
    • 1
  • Gholamreza Nabiyouni
    • 1
  • Davood Ghanbari
    • 2
  1. 1.Department of Physics, Faculty of ScienceArak UniversityArakIran
  2. 2.Young Researchers and Elite Club, Arak BranchIslamic Azad UniversityArakIran

Personalised recommendations