Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 9, pp 9152–9158 | Cite as

A new scheme to acquire BaY2F8:Er3+ nanofibers with upconversion luminescence

  • Yue Liu
  • Dan Li
  • Qianli Ma
  • Wensheng YuEmail author
  • Xue Xi
  • Xiangting DongEmail author
  • Jinxian Wang
  • Guixia Liu
Article

Abstract

PVP/[Ba(CH3COO)2 + Y(NO3)3 + Er(NO3)3] composite nanofibers were prepared via electrospinning, and then the mixed oxide nanofibers were obtained by calcination of the above composite nanofibers. BaY2F8:Er3+ nanofibers were successfully fabricated via a double-crucible fluorination method by using the prepared mixed oxide nanofibers as precursor. X-ray diffraction analysis reveals that BaY2F8:Er3+ nanofibers are pure monoclinic phase with space group of C2/m. The diameter of BaY2F8:Er3+ nanofibers is 159.9 ± 15.9 nm under the 95 % confidence level. Upconversion fluorescent spectroscopy analysis manifests that BaY2F8:Er3+ nanofibers emit strong green and weak red upconversion emissions centering at 523 (2H11/2 → 4I15/2), 540 (4S3/2 → 4I15/2) and 652 (4F9/2 → 4I15/2) nm, respectively, and the emitting colors of BaY2F8:Er3+ nanofibers are located in the green region in CIE chromaticity coordinates diagram. The optimum doping molar concentration of Er3+ ions in the BaY2F8:Er3+ nanofibers is found to be 5 %. The formation process and upconversion luminescence mechanism of the BaY2F8:Er3+ nanofibers are also studied. This novel preparative technique can be applied to fabricate other rare earth fluoride one-dimensional nanomaterials.

Keywords

Pump Power Composite Nanofibers Excited State Absorption Upconversion Luminescence Upconversion Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC 51573023, 50972020, 51072026), Specialized Research Fund for the Doctoral Program of Higher Education (20102216110002, 20112216120003), the Science and Technology Development Planning Project of Jilin Province (Grant Nos. 20130101001JC, 20070402).

References

  1. 1.
    G.Y. Chen, H.L. Qiu, P.N. Prasad, X.Y. Chen, Chem. Rev. 114(10), 5161–5214 (2014)CrossRefGoogle Scholar
  2. 2.
    S. Wang, S.Q. Su, S.Y. Song, R.P. Deng, H.J. Zhang, CrystEngComm 14, 4266–4269 (2012)CrossRefGoogle Scholar
  3. 3.
    S. Wang, S.Y. Song, R.P. Deng, H.L. Guo, Y.Q. Lei, F. Cao, X.Y. Li, S.Q. Su, H.J. Zhang, CrystEngComm 12, 3537–3541 (2010)CrossRefGoogle Scholar
  4. 4.
    F.Y. Weng, D.Q. Chen, Y.S. Wang, Y.L. Yu, P. Huang, H. Lin, Ceram. Int. 35(7), 2619–2923 (2009)CrossRefGoogle Scholar
  5. 5.
    G.F. Wang, Q. Peng, Y.D. Li, Chem. Commun. 46(7), 7528–7529 (2010)CrossRefGoogle Scholar
  6. 6.
    A.B. Andrade, A.C. de Mello, M.V.D.S. Rezende, S.L. Baldochi, M.E. Valerio, J. Appl. Phys. 116, 053521 (2014)CrossRefGoogle Scholar
  7. 7.
    A. Toncelli, B. Ahmadi, F. Marchetti, J. Lumin. 132(9), 2268–2274 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Boccolini, R. Faoro, E. Favilla, S. Veronesi, M. Tonelli, J. Appl. Phys. 114, 064904 (2013)CrossRefGoogle Scholar
  9. 9.
    G.S. Hong, X. Li, L.D. Shen, M. Wang, C. Wang, X.F. Yu, X.F. Wang, J. Hazard. Mater. 295, 161–169 (2015)CrossRefGoogle Scholar
  10. 10.
    W.W. Pan, R. Han, X. Chi, Q.F. Liu, J.B. Wang, J. Alloys Compd. 577, 192–194 (2013)CrossRefGoogle Scholar
  11. 11.
    Y.Y. Chen, Z.Y. Hou, B. Liu, S.S. Huang, C.X. Li, J. Lin, Dalton Trans. 44, 3118–3127 (2015)CrossRefGoogle Scholar
  12. 12.
    C.Y. Zhou, L. Xu, J. Song, R.Q. Xing, S. Xu, D.L. Liu, H.W. Song, Sci. Rep. 4, 7382–7386 (2014)CrossRefGoogle Scholar
  13. 13.
    Z.Y. Zhang, C.L. Shao, X. Li, L. Zhang, H. Xue, C. Wang, Y. Liu, J. Phys. Chem. C 114(17), 7920–7925 (2010)CrossRefGoogle Scholar
  14. 14.
    Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Nanoscale 6(5), 2945–2952 (2014)CrossRefGoogle Scholar
  15. 15.
    Z.Y. Zhang, C.L. Shao, Y.Y. Sun, J.B. Mu, M.Y. Zhang, P. Zhang, Z.C. Guo, P.P. Liang, C.H. Wang, Y.C. Liu, J. Mater. Chem. 22(4), 1387–1395 (2012)CrossRefGoogle Scholar
  16. 16.
    D. Li, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, J. Nanopart. Res. 15(6), 1–10 (2013)Google Scholar
  17. 17.
    D. Li, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Mater. Sci. 48(17), 5930–5937 (2013)CrossRefGoogle Scholar
  18. 18.
    Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, RSC Adv. 5(4), 2523–2530 (2015)CrossRefGoogle Scholar
  19. 19.
    X.H. Peng, A.C. Santulli, E. Sutter, S.S. Wong, Chem. Sci. 3(4), 1262–1272 (2012)CrossRefGoogle Scholar
  20. 20.
    Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Nanopart. Res. 16(2), 2239–2248 (2014)CrossRefGoogle Scholar
  21. 21.
    H. Song, H. Yu, G. Pan, X. Bai, B. Dong, X. Zhang, Chem. Mater. 20(14), 4762–4767 (2008)CrossRefGoogle Scholar
  22. 22.
    Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, ChemPlusChem 79(2), 290–297 (2014)CrossRefGoogle Scholar
  23. 23.
    X.M. Guo, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, CrystEngComm 16(24), 5409–5417 (2014)CrossRefGoogle Scholar
  24. 24.
    W.W. Ma, X.T. Dong, J.X. Wang, W.S. Yu, G.X. Liu, J. Electron. Mater. 43(9), 3701–3707 (2014)CrossRefGoogle Scholar
  25. 25.
    X.J. Zhou, Q.L. Ma, X.T. Dong, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci.: Mater. Electron. 35(5), 3112–3118 (2015)Google Scholar
  26. 26.
    K. Lun, Q.L. Ma, M. Yang, X.T. Dong, Y. Yang, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci.: Mater. Electron. 26(8), 5994–6003 (2015)Google Scholar
  27. 27.
    X. Xi, Q.L. Ma, M. Yang, X.T. Dong, Y. Yang, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci.: Mater. Electron. 25(9), 4024–4032 (2014)Google Scholar
  28. 28.
    K. Lun, Q.L. Ma, M. Yang, X.T. Dong, Y. Yang, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci.: Mater. Electron. 25(12), 5994–6003 (2014)Google Scholar
  29. 29.
    Z.G. Xia, J. Li, Y. Luo, L.B. Liao, J. Am. Ceram. Soc. 95(10), 3229–3234 (2012)CrossRefGoogle Scholar
  30. 30.
    Y.H. Song, Y.J. Huang, L.H. Zhang, Y.H. Zheng, N. Guo, H.P. You, RSC Adv. 2, 4777–4781 (2012)CrossRefGoogle Scholar
  31. 31.
    Y. Li, X.T. Wei, M. Yin, J. Alloys Compd. 509, 9865–9868 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin ProvinceChangchun University of Science and TechnologyChangchunChina

Personalised recommendations