Advertisement

Fabrication and improved photocatalytic activity of n-ZnO nanorod arrays/p-CuO thin film heterojunction

  • Duo Li
  • Shiyong GaoEmail author
  • Jinzhong WangEmail author
  • Lin Li
  • Qingjiang Yu
  • Shujie Jiao
  • Yong Zhang
  • Dongbo Wang
  • Fengyun Guo
  • Liancheng Zhao
Article

Abstract

ZnO nanorod arrays (NRs) are successfully synthesized on CuO thin film by hydrothermal method. The result of scanning electron microscopy demonstrates that the ZnO NRs produce great changes on morphology after deposited on CuO thin film. The current–voltage measurement of ZnO NRs/CuO film heterostructures show an evident rectifying behavior. Furthermore, the photocatalytic activity is investigated by degradation of methyl orange dye. It is found that compared with ZnO NRs, ZnO NRs/CuO film heterostructures display a better photocatalytic activity.

Keywords

Photocatalytic Activity Methyl Orange Visible Light Irradiation Visible Light Region Methyl Orange Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work was supported by National Science Foundation of China (Nos. 61306014 and 61574051), the Research Fund for the Doctoral Program of Higher Education of China (No. 20122302120009), the China Postdoctoral Science Foundation (No. 2013M540283), Heilongjiang Postdoctoral Foundation (LBH-Z11142), the Fundamental Research Funds for the Central Universities (No. HIT. NSRIF. 2014003), Natural Science Foundation of Heilongjiang Province of China (E2015002), and Open Project Program of Key Laboratory for Photonic and Electric Bandgap Materials, Ministry of Education, Harbin Normal University (PEBM201406).

References

  1. 1.
    H. Tong, S.X. Ouyang, Y.P. Bi, N. Umezawa, M. Oshikiri, J.H. Ye, Adv. Mater. 24, 229–251 (2012)CrossRefGoogle Scholar
  2. 2.
    D. Chatterjee, S. Dasgupta, J. Photochem. Photobiol. C 6, 186–205 (2005)CrossRefGoogle Scholar
  3. 3.
    J.G. Lv, F.J. Shang, G.C. Pan, F. Wang, Z.T. Zhou, C.L. Liu, W.B. Gong, Z.F. Zi, X.S. Chen, G. He, M. Zhang, X.P. Song, Z.Q. Sun, F. Liu, J. Mater. Sci. Mater. Electron. 25, 882–887 (2014)CrossRefGoogle Scholar
  4. 4.
    V. Vaiano, O. Sacco, D. Sannino, P. Ciambelli, Appl. Catal. B 170–171, 153–161 (2015)CrossRefGoogle Scholar
  5. 5.
    S.S. Xiao, L. Liu, J.S. Lian, J. Mater. Sci. Mater. Electron. 25, 5518–5523 (2014)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, G.W. She, H.T. Xu, Y.Y. Liu, L.X. Mu, W.S. Shi, Mater. Lett. 67, 110–112 (2012)CrossRefGoogle Scholar
  7. 7.
    H.G. Fan, X.T. Zhao, J.H. Yang, X.N. Shan, L.L. Yang, Y.J. Zhang, X.Y. Li, M. Gao, Catal. Commun. 29, 29–34 (2012)CrossRefGoogle Scholar
  8. 8.
    A.C. Dodd, A.J. McKinley, M. Saunders, T. Tsuzuki, J. Nanopart. Res. 8, 43–51 (2006)CrossRefGoogle Scholar
  9. 9.
    S. Anandan, A. Vinu, T. Mori, N. Gokulakrishnan, P. Srinivasu, V. Murugesan, K. Ariga, Catal. Commun. 8, 1377–1382 (2007)CrossRefGoogle Scholar
  10. 10.
    Y.S. Liu, S.H. Wei, W. Gao, J. Hazard. Mater. 287, 59–68 (2015)CrossRefGoogle Scholar
  11. 11.
    L.Y. Zhang, L.W. Yin, C.X. Wang, N. Lun, Y.X. Qi, ACS Appl. Mater. Interfaces 6, 1769–1773 (2010)CrossRefGoogle Scholar
  12. 12.
    S.Y. Gao, S.J. Jiao, B. Lei, H.T. Li, J.Z. Wang, Q.J. Yu, D.B. Wang, F.Y. Guo, L.C. Zhao, J. Mater. Sci. Mater. Electron. 26, 1018–1022 (2015)CrossRefGoogle Scholar
  13. 13.
    A.A. Al-Ghamdi, M.H. Khedr, M.S. Ansari, P.M.Z. Hasan, M.S. Abdel-wahab, A.A. Farghali, Phys. E 81, 83–90 (2016)CrossRefGoogle Scholar
  14. 14.
    P. Sathishkumar, R. Sweena, J.J. Wu, S. Anandan, Chem. Eng. J. 171, 136–140 (2011)CrossRefGoogle Scholar
  15. 15.
    Z.S. Hong, Y. Gao, J.F. Deng, Mater. Lett. 52, 34–38 (2002)CrossRefGoogle Scholar
  16. 16.
    Y.X. Liu, J.X. Shi, Q. Peng, Y.D. Li, Chem. Eur. J. 19, 4319–4326 (2013)CrossRefGoogle Scholar
  17. 17.
    C. Yang, X.D. Cao, S.J. Wang, L. Zhang, F. Xiao, X.T. Su, J.D. Wang, Ceram. Int. 41, 1749–1756 (2015)CrossRefGoogle Scholar
  18. 18.
    P. Shreyasi, M. Soumen, N.M. Uday, K.C. Kalyan, CrystEngComm 17, 1464–1476 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Jung, K.J. Yong, Chem. Commun. 47, 2643–2645 (2011)CrossRefGoogle Scholar
  20. 20.
    K. Mageshwari, D. Nataraj, P. Tarasankar, R. Sathyamoorthy, P. Jinsub, J. Alloys Compd. 625, 362–370 (2015)CrossRefGoogle Scholar
  21. 21.
    R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, A. Stephen, Mater. Sci. Eng. C 33, 91–98 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Duo Li
    • 1
  • Shiyong Gao
    • 1
    • 2
    Email author
  • Jinzhong Wang
    • 1
    Email author
  • Lin Li
    • 2
  • Qingjiang Yu
    • 1
  • Shujie Jiao
    • 1
  • Yong Zhang
    • 1
  • Dongbo Wang
    • 1
  • Fengyun Guo
    • 1
  • Liancheng Zhao
    • 1
  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.Key Laboratory for Photonic and Electric Bandgap Materials, Ministry of EducationHarbin Normal UniversityHarbinChina

Personalised recommendations