A facile route to preparation of Co3O4 nanoplates and investigation of their charge storage ability as electrode material for supercapacitors

  • Mustafa Aghazadeh
  • Rohollah Ahmadi
  • Davoud Gharailou
  • Mohammad Reza Ganjali
  • Parviz Norouzi


A fast, cheap and facile method was developed for the preparation of Co3O4 nanoplates at large-scale. According to this method, initially β-Co(OH)2 nanoplates were prepared through a simple, template- and additive-free electrodeposition route and then the Co3O4 nanoplates were obtained via the calcination of the hydroxide precursor at 500 °C for 3 h, under an O2 atmosphere. The products were characterized by XRD, IR, DCS-TG and SEM techniques, and electrochemical investigations by cyclic voltammetry, charge–discharge tests and EIS measurements, which confirmed the excellent supercapacitive performance of the Co3O4 nanoplates including their high contribution and electrochemical utilization in the redox reactions, reversible redox reactions, low diffusion resistance, high specific capacitance of 485 F g−1, and an 84.1 % capacity retention after 3000 cycling at the applied discharge current density of 5 A g−1.


Specific Capacitance Co3O4 Electrochemical Impedance Spectroscopy Cyclic Voltammetric Curve Electrochemical Impedance Spectroscopy Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Pavul Raj, P. Ragupathy, S. Mohan, J. Mater. Chem. A 3, 24338 (2015)CrossRefGoogle Scholar
  2. 2.
    T. Meng, Q.Q. Xu, Z.H. Wang, Y.T. Li, Z.M. Gao, X.Y. Xing, T.Z. Ren, Electrochim. Acta 180, 104 (2015)CrossRefGoogle Scholar
  3. 3.
    X. Zhou, X. Shen, Z. Xia, Z. Zhang, J. Li, Y. Ma, Y. Qu, ACS Appl Mater. Interfaces 7, 20322 (2015)CrossRefGoogle Scholar
  4. 4.
    F. Manteghi, H. Kazemi, M. Peyvandipour, A. Asghari, RSC Adv. 5, 76458 (2015)CrossRefGoogle Scholar
  5. 5.
    A.N. Naveen, P. Manimaran, S. Selladurai, J. Mater. Sci. Mater. Electron. 26, 8988 (2015)CrossRefGoogle Scholar
  6. 6.
    H. Lin, Q. Huang, J. Wang, J. Jiang, F. Liu, Y. Chen, C. Wang, D. Lu, S. Han, Electrochim. Acta 191, 444 (2016)CrossRefGoogle Scholar
  7. 7.
    Z. Hai, L. Gao, Q. Zhang, H. Xu, D. Cui, Z. Zhang, D. Tsoukalas, J. Tang, S. Yan, Appl. Surf. Sci. 361, 57 (2016)CrossRefGoogle Scholar
  8. 8.
    S. Ali Khan, S. Bahadar Khan, A.M. Asiri, J. Mater. Sci. Mater. Electron. 27, 5294 (2016)CrossRefGoogle Scholar
  9. 9.
    F.L.S. Carvalho, Y.J.O. Asencios, J.D.A. Bellido, E.M. Assaf, Fuel Process. Technol. 142, 182 (2016)CrossRefGoogle Scholar
  10. 10.
    N.M. Shaalan, M. Rashad, A.H. Moharram, M.A. Abdel-Rahim, Mater. Sci. Semicond. Process. 46, 1 (2016)CrossRefGoogle Scholar
  11. 11.
    H. Che, A. Liu, J. Hou, J. Mu, Y. Bai, S. Zhao, X. Zhang, H. He, J. Mater. Sci. Mater. Electron. 25, 3209 (2014)CrossRefGoogle Scholar
  12. 12.
    Z. Gao, L. Zhang, C. Ma, Q. Zhou, Y. Tang, Z. Tu, W. Yang, L. Cui, Y. Li, Biosens. Bioelectron. 80, 511 (2016)CrossRefGoogle Scholar
  13. 13.
    B. Wu, L. Wang, H. Wu, K. Kan, G. Zhang, Y. Xie, Y. Tian, L. Li, K. Shi, Microporous Mesoporous Mater. 225, 154 (2016)CrossRefGoogle Scholar
  14. 14.
    L.T. Hoa, J.S. Chung, S.H. Hur, Sens. Actuators B Chem. 223, 76 (2016)CrossRefGoogle Scholar
  15. 15.
    Y. Zhu, Y. Chu, J. Liang, Y. Li, Z. Yuan, W. Li, Y. Zhang, X. Pan, S.L. Chou, L. Zhao, R. Zeng, Electrochim. Acta 190, 843 (2016)CrossRefGoogle Scholar
  16. 16.
    R. Gao, J. Zhu, X. Xiao, Z. Hu, J. Liu, X. Liu, J. Phys. Chem. C 119, 4516 (2015)CrossRefGoogle Scholar
  17. 17.
    J. Wu, L. Zuo, Y. Song, Y. Chen, R. Zhou, S. Chen, L. Wang, J. Alloys Compd. 656, 745 (2016)CrossRefGoogle Scholar
  18. 18.
    W. Liu, X. Li, M. Zhu, X. He, J. Power Sources 282, 179 (2015)CrossRefGoogle Scholar
  19. 19.
    X. Pan, X. Chen, Y. Li, Z. Yu, Electrochim. Acta 182, 1101 (2015)CrossRefGoogle Scholar
  20. 20.
    K. Qiu, Y. Lu, J. Cheng, H. Yan, X. Hou, D. Zhang, M. Lu, X. Liu, Y. Luo, Electrochim. Acta 157, 62 (2015)CrossRefGoogle Scholar
  21. 21.
    H. Che, A. Liu, J. Mater. Sci. Mater. Electron. 26, 4097 (2015)CrossRefGoogle Scholar
  22. 22.
    F. Wang, C. Lu, Y. Qin, C. Liang, M. Zhao, S. Yang, Z. Sun, X. Song, J. Power Sources 235, 67 (2013)CrossRefGoogle Scholar
  23. 23.
    C.W. Kung, H.W. Chen, C.Y. Lin, R. Vittal, K.C. Ho, J. Power Sources 214, 91 (2012)CrossRefGoogle Scholar
  24. 24.
    M. Ghiasi, A. Malekzadeh, H. Mardani, Mater. Sci. Semicond. Process. 42, 311 (2016)CrossRefGoogle Scholar
  25. 25.
    Y. Zheng, Z. Li, J. Xu, T. Wang, X. Liu, X. Duan, Y. Ma, Y. Zhou, C. Pei, Nano Energy 20, 94 (2016)CrossRefGoogle Scholar
  26. 26.
    Z. Han, X. Zheng, S. Yao, H. Xiao, F. Qu, X. Wu, Appl. Surf. Sci. 365, 240 (2016)CrossRefGoogle Scholar
  27. 27.
    R. Manogowri, R. Mary Mathelane, S. Valanarasu, I. Kulandaisamy, A. Benazir Fathima, A. Kathalingam, J. Mater. Sci. Mater. Electron. 27, 3860 (2016)CrossRefGoogle Scholar
  28. 28.
    G.P. Kim, I. Nam, N.D. Kim, J. Park, S. Park, J. Yi, Electrochem. Commun. 22, 93 (2012)CrossRefGoogle Scholar
  29. 29.
    A.D. Jagadale, V.S. Kumbhar, C.D. Lokhande, J. Colloid Interface Sci. 406, 225 (2013)CrossRefGoogle Scholar
  30. 30.
    A.D. Jagadale, V.S. Kumbhar, R.N. Bulakhe, C.D. Lokhande, Energy 64, 234 (2014)CrossRefGoogle Scholar
  31. 31.
    Y.F. Yuan, X.H. Xi, J.B. Wu, X.H. Huang, Y.B. Pei, J.L. Yang, S.Y. Guo, Electrochem. Commun. 13, 1123–1126 (2011)CrossRefGoogle Scholar
  32. 32.
    M. Aghazadeh, J. Appl. Electrochem. 42, 89 (2012)CrossRefGoogle Scholar
  33. 33.
    M. Aghazadeh, M. Hosseinifard, B. Sabour, S. Dalvand, Appl. Surf. Sci. 287, 187 (2013)CrossRefGoogle Scholar
  34. 34.
    P. Razmjoo, B. Sabour, S. Dalvand, M. Aghazadeh, M.R. Ganjali, J. Electrochem. Soc. 161, D293 (2014)CrossRefGoogle Scholar
  35. 35.
    M. Aghazadeh, S. Dalvand, J. Electrochem. Soc. 161, D18 (2014)CrossRefGoogle Scholar
  36. 36.
    M. Aghazadeh, A.A.M. Barmi, T. Yousefi, J. Iran. Chem. Soc. 9, 225 (2012)CrossRefGoogle Scholar
  37. 37.
    M. Aghazadeh, S. Dalvand, M. Hosseinifard, Ceram. Int. 40, 3485 (2014)CrossRefGoogle Scholar
  38. 38.
    M. Aghazadeh, H.M. Shiri, A.A.M. Barmi, Appl. Surf. Sci. 273, 237 (2013)CrossRefGoogle Scholar
  39. 39.
    M. Aghazadeh, A.A.M. Barmi, D. Gharailou, M.H. Peyrovi, B. Sabour, F. Najafi, Appl. Surf. Sci. 283, 871 (2013)CrossRefGoogle Scholar
  40. 40.
    J.P. Cheng, X. Chen, J.S. Wu, F. Liu, X.B. Zhang, V.P. Dravid, CrystEngComm 14, 6702 (2012)CrossRefGoogle Scholar
  41. 41.
    Z.P. Xu, H.C. Zeng, Chem. Mater. 11, 67 (1999)CrossRefGoogle Scholar
  42. 42.
    Z. Liu, R. Ma, M. Osada, K. Takada, T. Sasaki, J. Am. Chem. Soc. 127, 13869 (2005)CrossRefGoogle Scholar
  43. 43.
    Y.G. Li, B. Tan, Y.Y. Wu, J. Am. Chem. Soc. 128, 14258 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mustafa Aghazadeh
    • 1
  • Rohollah Ahmadi
    • 2
  • Davoud Gharailou
    • 3
  • Mohammad Reza Ganjali
    • 3
    • 4
  • Parviz Norouzi
    • 3
  1. 1.Nuclear Science and Technology Research Institute (NSTRI)TehranIran
  2. 2.Chemistry Department, Saveh BranchIslamic Azad UniversitySavehIran
  3. 3.Center of Excellence in Electrochemistry, Faculty of ChemistryUniversity of TehranTehranIran
  4. 4.Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences InstituteTehran University of Medical SciencesTehranIran

Personalised recommendations