Advertisement

Electrical characterizations of Au/ZnO/n-GaAs Schottky diodes under distinct illumination intensities

  • S. O. Tan
  • H. Uslu Tecimer
  • O. Çiçek
  • H. Tecimer
  • İ. Orak
  • Ş. Altındal
Article

Abstract

The Au/ZnO/n-GaAs Schottky barrier diode was fabricated and examined regarding to its current–voltage characteristics under distinct illumination intensities at room temperature. The reverse biased current increases with increasing illumination level while forward biased current is almost unchanged with illumination which states that the fabricated diodes exhibit photosensitive character or photodiode behavior. Hence, the shunt resistance is decreased with illumination while the series resistance is almost remained constant. The increment in the ideality factor after illumination can be ascribed to the assumption of inhomogeneities at M/S interface. Considering the ideality factor and the voltage dependent effective barrier height, the energy distribution profiles of surface states (Nss) were formed by the forward bias current–voltage data and increased with increasing illumination level. The Nss values acquired by considering series resistance are lower than those acquired by ignoring series resistance. Consequently, surface states can serve as recombination centers and have great importance especially in reverse bias current–voltage characteristics.

Keywords

GaAs Barrier Height Reverse Bias Ideality Factor Forward Bias 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study has been funded by Scientific Research Project (BAP) Coordinatorship of Karabuk University with Project Codes of KBU-BAP-14/2-DR-005 and KBU-BAP-14/2-DR-006.

References

  1. 1.
    E.H. Rhoderick, Metal-Semiconductor Contacts (Oxford University Press, Oxford, 1978)Google Scholar
  2. 2.
    K. Kano, Semiconductor Devices (Prentice-Hall, Upper Saddle River, 1998)Google Scholar
  3. 3.
    A. Kaya, E. Marıl, Ş. Altındal, İ. Uslu, Microelectron. Eng. 185, 166–171 (2016)CrossRefGoogle Scholar
  4. 4.
    E. Marıl, A. Kaya, S. Koçyiğit, Ş. Altındal, Mater. Sci. Semicond. Proc. 31, 256–261 (2015)CrossRefGoogle Scholar
  5. 5.
    B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications (Plenum Press, New York, 1984)CrossRefGoogle Scholar
  6. 6.
    N. Başman, O. Uzun, S. Fiat, C. Alkan, G. Çankaya, J. Mater. Sci. Mater. Electron. 13, 273–275 (2002). doi: 10.1007/s10854-012-0819-1 CrossRefGoogle Scholar
  7. 7.
    S. Demirezen, Ş. Altındal, İ. Uslu, Current Appl. Phys. 13, 53–59 (2013)CrossRefGoogle Scholar
  8. 8.
    P. Macháč, V. Peřina, J. Mater. Sci. Mater. Electron. 23, 2282–2288 (2012)CrossRefGoogle Scholar
  9. 9.
    S.M. Sze, Physics Semiconductor Devices (Wiley, New York, 1981), pp. 24–30Google Scholar
  10. 10.
    M. Mamor, K. Bouziane, A. Tirbiyine, H. Alhamrashdi, Superlattices Microstruct. 72, 344–351 (2014). doi: 10.1016/j.spmi.2014.05.012 CrossRefGoogle Scholar
  11. 11.
    T.S. Huang, R.S. Fang, Solid State Electron. 37, 1652–1661 (1994). doi: 10.1016/0038-1101(94)90152 Google Scholar
  12. 12.
    M. Soylu, F. Yakuphanoglu, Superlattices Microstruct. 52, 470–483 (2012). doi: 10.1016/j.spmi.2012.05.022 CrossRefGoogle Scholar
  13. 13.
    A.F. Özdemir, A. Türüt, A. Kökce, Thin Solid Films 425, 210–215 (2003)CrossRefGoogle Scholar
  14. 14.
    M.E. Aydın, M. Soylu, F. Yakuphanoglu, W.A. Farooq, Microelectron. Eng. 88, 867–871 (2011). doi: 10.1016/j.mee.2010.11.012 CrossRefGoogle Scholar
  15. 15.
    S. Demirezen, E. Özavcı, Ş. Altındal, Mater. Sci. Semicond. Proc. 23, 1–6 (2014). doi: 10.1016/j.mssp.2014.02.022 CrossRefGoogle Scholar
  16. 16.
    J.M. Borrego, R.J. Gutmann, S. Ashok, Solid State Electron. 20, 125–132 (1977)CrossRefGoogle Scholar
  17. 17.
    F.A. Padovani, G.G. Sumner, J. Appl. Phys. 36, 3744–3747 (1965)CrossRefGoogle Scholar
  18. 18.
    V.R. Reddy, V. Janardhanam, M.-S. Kang, C.-J. Choi, J. Mater. Sci. Mater. Electron. 25, 2379–2386 (2014). doi: 10.1007/s10854-012-0819-1 CrossRefGoogle Scholar
  19. 19.
    E. Özavcı, S. Demirezen, U. Aydemir, Ş. Altındal, Sens. Actuators A 194, 259–268 (2013). doi: 10.1016/j.sna.2013.02.018 CrossRefGoogle Scholar
  20. 20.
    Ö. Güllü, M. Biber, S. Duman, A. Türüt, Appl. Surf. Sci. 253, 7246–7253 (2007). doi: 10.1016/j.apsusc.2007.03.002 CrossRefGoogle Scholar
  21. 21.
    M.K. Hudait, P. Venkateswarlu, S.B. Krupanidhi, Solid State Electron. 45, 133–141 (2001)CrossRefGoogle Scholar
  22. 22.
    T.T.A. Tuan, D.-H. Kuo, C.-C. Li, W.-C. Yen, J. Mater. Sci. Mater. Electron. 25, 3264–3270 (2014). doi: 10.1007/s10854-014-2012-1 CrossRefGoogle Scholar
  23. 23.
    İ. Yücedağ, A. Kaya, H. Tecimer, Ş. Altındal, Mater. Sci. Semicond. Proc. 28, 37–42 (2014). doi: 10.1016/j.mssp.2014.03.051 CrossRefGoogle Scholar
  24. 24.
    H. Tecimer, A. Türüt, H. Uslu, Ş. Altındal, İ. Uslu, Sens. Actuators A 199, 194–201 (2013). doi: 10.1016/j.sna.2013.05.027 CrossRefGoogle Scholar
  25. 25.
    J. Werner, H. Guttler, J. Appl. Phys. 69, 1522–1533 (1991)CrossRefGoogle Scholar
  26. 26.
    G.B. Sakr, I.S. Yahia, J. Alloys Compd. 503, 213 (2010)CrossRefGoogle Scholar
  27. 27.
    J.K. Jha, R.S. Ortiz, J. Du, N.D. Shepherd, J. Mater. Sci. Mater. Electron. 25, 1492–1498 (2014). doi: 10.1007/s10854-014-1758-9 CrossRefGoogle Scholar
  28. 28.
    C. Tsiarapas, D. Girginoudi, N. Georgoulas, Superlattices Microstruct. 75, 171–182 (2014). doi: 10.1016/j.spmi.2014.07.041 CrossRefGoogle Scholar
  29. 29.
    C.S. Singh, G. Agarwal, G. DurgaRao, S. Chaudhary, R. Singh, Mater. Sci. Semicond. Proc. 14, 1–4 (2011). doi: 10.1016/j.mssp.2010.12.009 CrossRefGoogle Scholar
  30. 30.
    B.K. Singh, S. Tripathi, Superlattices Microstruct. 85, 697–706 (2015). doi: 10.1016/j.spmi.2015.06.038 CrossRefGoogle Scholar
  31. 31.
    A. Sarıyıldız, Ö. Vural, M. Evecen, Ş. Altındal, J. Mater. Sci. Mater. Electron. 25, 4391–4397 (2014). doi: 10.1007/s10854-014-2178-6 CrossRefGoogle Scholar
  32. 32.
    M.O. Aboelfotoh, J. Appl. Phys. 69, 3351 (1991)CrossRefGoogle Scholar
  33. 33.
    A. Tataroğlu, Ş. Altındal, Microelectron. Eng. 85, 233–237 (2008). doi: 10.1016/j.mee.2007.05.043 CrossRefGoogle Scholar
  34. 34.
    H.C. Card, E.H. Rhoderick, J Phys D 4, 1589 (1971)CrossRefGoogle Scholar
  35. 35.
    J.H. Werner, Appl. Phys. A 47, 291 (1988)CrossRefGoogle Scholar
  36. 36.
    Ş. Altındal, S. Karadeniz, N. Tuğluoğlu, A. Tataroğlu, Solid State Electron. 47, 1847–1854 (2003)CrossRefGoogle Scholar
  37. 37.
    P. Chattopadhyay, Solid State Electron. 37, 1759 (1994). doi: 10.1016/0038-1101(94)90223-2 CrossRefGoogle Scholar
  38. 38.
    H. Uslu, Ş. Altındal, U. Aydemir, İ. Dokme, İ.M. Afandiyeva, J. Alloy. Compd. 503, 96–102 (2010). doi: 10.1016/j.jallcom.2010.04.210 CrossRefGoogle Scholar
  39. 39.
    A. Kaya, Ö. Vural, H. Tecimer, S. Demirezen, Ş. Altındal, Current Appl. Phys. 14, 322–330 (2014). doi: 10.1016/j.cap.2013.12.005 CrossRefGoogle Scholar
  40. 40.
    S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)CrossRefGoogle Scholar
  41. 41.
    Amir Hussain, Atowar Rahman, Superlattices Microstruct. 80, 39–52 (2015). doi: 10.1016/j.spmi.2014.12.030 CrossRefGoogle Scholar
  42. 42.
    A.A.M. Farag, I.S. Yahia, M. Fadel, Int. J. Hydrogen Energy 34, 4906 (2009). doi: 10.1016/j.ijhydene.2009.03.034 CrossRefGoogle Scholar
  43. 43.
    S.A. Yerişkin, H. Uslu, T. Tunç, Ş. Altındal, Int. Congr. Adv. Appl. Phys.Mater. Sci. AIP Conf. Proc. 1400, 541–545 (2011). doi: 10.1063/1.3663178 Google Scholar
  44. 44.
    F. Yakuphanoğlu, K. Mensah-Darkwa, A.A. Al-Ghamdi, R.K. Gupta, W.A. Farooq, Microelectron. Eng. 154, 53–61 (2016). doi: 10.1016/j.mee.2016.03.001 CrossRefGoogle Scholar
  45. 45.
    M.Y. Feteha, M. Soliman, N.G. Gomaa, M. Ashry, Renew. Energy 26, 113 (2002). doi: 10.1016/S0960-1481(01)00102-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. O. Tan
    • 1
  • H. Uslu Tecimer
    • 2
  • O. Çiçek
    • 3
  • H. Tecimer
    • 4
  • İ. Orak
    • 5
  • Ş. Altındal
    • 6
  1. 1.Karabuk Vocational SchoolKarabuk UniversityKarabükTurkey
  2. 2.Department of Electrical and Electronic Engineering, Faculty of EngineeringKarabük UniversityKarabükTurkey
  3. 3.Arac Vocational SchoolKastamonu UniversityKastamonuTurkey
  4. 4.Department of Mechatronics Engineering, Faculty of TechnologyKarabük UniversityKarabükTurkey
  5. 5.Vocational School of Health ServicesBingöl UniversityBingölTurkey
  6. 6.Department of Physics, Faculty of ScienceGazi UniversityAnkaraTurkey

Personalised recommendations