Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 12, pp 12323–12328 | Cite as

Synthesis and characterization of zinc stannate thin films prepared by spray pyrolysis technique

  • Mahendra A. Patil
  • Sarfraj H. Mujawar
  • Vinayak V. Ganbavle
  • Kesu Y. Rajpure
  • Harish P. Deshmukh


The zinc stannate thin films were synthesized by simple and inexpensive spray pyrolysis technique on the glass and fluorine doped tin oxide coated conducting glass substrates. The as deposited films were further annealed at 500 °C temperature for 12 h. The structural optical and morphological characterization of as prepared and annealed films was carried out by XRD, UV–Vis spectroscopy, SEM and AFM techniques respectively. The structural analysis shows that films are polycrystalline and crystallized in cubic inverse spinel crystal structure. SEM studies show that grain size increases after annealing and exhibits spherical morphology. AFM study shows that roughness is higher for the post annealed film. Further the samples were tested for testing their applicability for dye sensitized solar cells. The as prepared, annealed and CNT doped samples exhibits photoconversion efficiencies 2.7, 2.8 and 3.1 % respectively.


Power Conversion Efficiency Binary Oxide Spray Pyrolysis Technique Photoconversion Efficiency Zinc Stannate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge Dr. S. B. Ogale (NCL, Pune) for availing facilities for DSSC measurement and Director BCUD Savitribai Phule University of Pune, Pune for financial support through minor research project.


  1. 1.
    B. O'Regan, M. Gratzel, Nature 353, 737–740 (1991)CrossRefGoogle Scholar
  2. 2.
    Q. Wang, S. Ito, M. Gratzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, H. Imai, J. Phys. Chem. B 110, 25210–25221 (2006)CrossRefGoogle Scholar
  3. 3.
    A. Yella, H. Lee, H. Tsao, C. Yi, A. Chandiran, M. Nazeeruddin, E. Diau, C. Yeh, S.M. Zakeeruddin, M. Gratzel, Science 334, 629–634 (2012)CrossRefGoogle Scholar
  4. 4.
    W. Cun, W. Xinming, Z. Jincai, M. Bixian, S. Guoying, P. Pingan, F. Jiamo, Synthesis, characterization and photocatalytic property of nano-sized Zn2SnO4. J. Mater. Sci. 37, 2989–2996 (2002)CrossRefGoogle Scholar
  5. 5.
    X. Lou, X. Jia, J. Xu, S. Liu, Q. Gao, Mater. Sci. Eng. A 432, 221–225 (2006)CrossRefGoogle Scholar
  6. 6.
    X. Fu, X. Wang, Z. Ding, D.Y.C. Leung, Z. Zhang, J. Long, W. Zhang, Z. Li, X. Fu, Appl. Catal. B Environ. 91(1–2), 67–72 (2009)CrossRefGoogle Scholar
  7. 7.
    B. Tan, E. Toman, Y. Li, Y. Wu, J. Am. Chem. Soc. 129(14), 4162–4163 (2007)CrossRefGoogle Scholar
  8. 8.
    J. Zeng, M. Xin, K. Li, H. Wang, H. Yan, W. Zhang, J. Phys. Chem. C 112(11), 4159–4167 (2008)CrossRefGoogle Scholar
  9. 9.
    Y. Zhang, M. Guo, M. Zhang, C. Yang, T. Ma, X. Wang, J. Cryst. Growth 308(1), 99–104 (2007)CrossRefGoogle Scholar
  10. 10.
    M. Alpuche-Aviles, Y. Wu, J. Am. Chem. Soc. 131, 3216–3224 (2009)CrossRefGoogle Scholar
  11. 11.
    B. Tan, E. Toman, Y.G. Li, Y. Wu, J. Am. Chem. Soc. 129, 4162–4163 (2007)CrossRefGoogle Scholar
  12. 12.
    D. Kim, S. Shin, I. Cho, S. Lee, D. Kim, C. Lee, H. Jun, K. Hong, Nanoscale 4, 557–562 (2012)CrossRefGoogle Scholar
  13. 13.
    S.S. Shin, D.W. Kim, D. Hwang, J.H. Suk, L.S. Oh, B.S. Han, D.H. Kim, J.S. Kim, J.Y. Kim, K.S. Hong, ChemSusChem 7, 501–509 (2014)CrossRefGoogle Scholar
  14. 14.
    S. Choi, D. Hwang, D. Kim, Y. Kervella, P. Maldivi, S. Jang, R. Demadrille, I. Kim, Adv. Funct. Mater. 23, 3146–3155 (2013)CrossRefGoogle Scholar
  15. 15.
    Y. Wang, K. Li, Y. Xu, H. Rao, C. Su, D. Kuang, Nanoscale 5, 5940–5958 (2013)CrossRefGoogle Scholar
  16. 16.
    K. Wang, Y. Shi, W. Guo, X. Yu, T. Ma, Electrochim. Acta 135, 242–248 (2014)CrossRefGoogle Scholar
  17. 17.
    Z. Li, Y. Zhou, H. Yang, R. Huang, Z. Zou, Electrochim. Acta 152, 25–30 (2015)CrossRefGoogle Scholar
  18. 18.
    F. Mechelti, P. Mark, Appl. Phys. Lett. 10, 136 (1967)CrossRefGoogle Scholar
  19. 19.
    D.W. Jeon, J.W. Jeon, M. Kim, M.H. Lee, L.W. Jang, I.H. Lee, J Korean Phys. Soc. 57–6, 1867–1870 (2010)Google Scholar
  20. 20.
    Y. Morinaga, R. Sakuragi, N. Fujishima, T. Ito. J. Cryst. Growth 174, 691–695 (1997)CrossRefGoogle Scholar
  21. 21.
    S. Suwanboon, Naresuan Univ. J 16–2, 173–180 (2008)Google Scholar
  22. 22.
    D.L. Young, D.L. Williamson, T.J. Coutts, J. Appl. Phys. 91, 1464–1471 (2002)CrossRefGoogle Scholar
  23. 23.
    J. Zeng, M. Xin, K. Li, H. Wang, H. Yan, W. Zhang, J. Phys. Chem. C 112, 4159–4167 (2008)CrossRefGoogle Scholar
  24. 24.
    D.L. Young, H. Moutinho, Y. Yan, T.J. Coutts, J. Appl. Phys. 92, 310–319 (2002)CrossRefGoogle Scholar
  25. 25.
    K. Satoh, Y. Kakehi, A. Okamoto, S. Murakami, F. Uratani, T. Yotsuya, Jpn. J. Appl. Phys. Part 2 44, L34 (2005)CrossRefGoogle Scholar
  26. 26.
    S. Muduli, W. Lee, V. Dhas, S. Mujawar, M. Dubey, K. Vijaymohanan, S.H. Han, S.B. Ogale, ACS Appl. Mater. Interfaces 1(9), 2030–2035 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mahendra A. Patil
    • 1
  • Sarfraj H. Mujawar
    • 1
  • Vinayak V. Ganbavle
    • 2
  • Kesu Y. Rajpure
    • 2
  • Harish P. Deshmukh
    • 3
  1. 1.Rayat Shikshan Sanstha’s Mahatma Phule MahavidyalayaPimpri, PuneIndia
  2. 2.Electrochemical Materials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia
  3. 3.Department of Physics, Y. M. CollegeBharati Vidyapeeth UniversityErandwane, PuneIndia

Personalised recommendations