On the thickness of Cu6Sn5 compound at the anode of Cu/liquid Sn/Cu joints undergoing electromigration

  • Anil Kunwar
  • Haoran Ma
  • Haitao Ma
  • Bingfeng Guo
  • Zhixian Meng
  • Ning Zhao
  • Mingliang Huang
Article

Abstract

In the electromigration tests performed with the Cu/liquid Sn/Cu samples of effective Sn lengths \(450\, \upmu \hbox {m}\) and \(1.243\,\hbox {mm}\) under current densities of \(5.6 \times 10^2\) and \(3.0 \times 10^3\,\hbox {A}/\hbox {cm}^2\) respectively at \(250\,^{\circ }\hbox {C}\), the thickness increments of anode \(\hbox {Cu}_6\hbox {Sn}_5\) intermetallic compounds were in-situ observed using synchrotron radiation imaging technique. The size of the compound attained for the smaller sample at reflow time of 1 h was \(110\, \upmu \hbox {m}\) whereas the larger specimen yielded a thickness value \(152\,\upmu \hbox {m}\) by the end of 45 min. Though the magnitude of effective charge number for electromigration is reduced at higher current density values, it is revealed that the net effect of bigger current intensity is always the built up of thicker intermetallic compound. Additionally, the raise in medium temperature caused by greater joule heating in samples corresponding to bigger current density, can be associated with the increment of transport of Cu from cathode to anode. Owing to the slower diffusion phenomena in larger specimens, the electromigration enhanced growth of the compound is more pronounced at the later stage of the experiment. The numerical model for advection–diffusion of Cu species was implemented using finite element method.

References

  1. 1.
    J.F. Damico, H. Huntington, J. Phys. Chem. Solids 30, 2607 (1969)CrossRefGoogle Scholar
  2. 2.
    H. Xiao, X.Y. Li, Y.X. Zhu, J.L. Yang, J. Chen, F. Guo, J. Mater. Sci. Mater. Electron. 24, 2527 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Li, Y. Yan, J. Mater. Sci. Mater. Electron. 26, 9470 (2015)CrossRefGoogle Scholar
  4. 4.
    M.L. Huang, F. Yang, N. Zhao, Z.J. Zhang, Mater. Lett. 139, 42 (2015)CrossRefGoogle Scholar
  5. 5.
    H.T. Ma, A. Kunwar, J. Sun, B. Guo, H.R. Ma, Scr. Mater. 107, 88 (2015)CrossRefGoogle Scholar
  6. 6.
    T.Y. Lee, K.N. Tu, S.M. Kuo, D.R. Frear, J. Appl. Phys. 89, 3189 (2001)CrossRefGoogle Scholar
  7. 7.
    K.P. Chae, J. Weld. Join. 23, 49 (2005)Google Scholar
  8. 8.
    H. Gan, W.J. Choi, G. Xu, K.N. Tu, J. Met. 54, 34 (2002)Google Scholar
  9. 9.
    H. Gan, K.N. Tu, J. Appl. Phys. 97, 063514 (2005)CrossRefGoogle Scholar
  10. 10.
    K.N. Tu, R.D. Thompson, Acta Metall. 30, 947 (1982)CrossRefGoogle Scholar
  11. 11.
    P.S. Ho, H.B. Huntington, J. Phys. Chem. Solids. 27, 1319 (1966)CrossRefGoogle Scholar
  12. 12.
    Y. Kang, C. Yang, X. Huang, Langmuir 21, 7598 (2005)CrossRefGoogle Scholar
  13. 13.
    J.H. Meng, X.D. Wang, X.X. Zhang, Appl. Energy 108, 340 (2013)CrossRefGoogle Scholar
  14. 14.
    T. Siewert, S. Liu, D. R. Smith, J. C. Madeni, Properties of Lead-Free Solders Release 4.0 (Colorado, 2002)Google Scholar
  15. 15.
    S. Sharafat, N. Ghoniem, Summary of Thermo-Physical Properties of Sn, and Compounds of Sn–H, Sn–O, Sn–C, Sn–Li, and Sn–Si and Comparison of Properties of Sn, Sn–Li, Li, and Pb–Li (California, 2000)Google Scholar
  16. 16.
    C. Schmetterer, A. Mikula, H. Ipser, Database for Properties of Lead-Free Solder Alloys Version 1.0 (Vienna, 2006)Google Scholar
  17. 17.
    B. Sundman, U.R. Kattner, M. Palumbo, S.G. Fries, Integr. Mater. Manuf. Innov. 4, 1 (2015)CrossRefGoogle Scholar
  18. 18.
    B. Sundman, X.-G. Lu, H. Ohtani, Comput. Mater. Sci. 101, 127 (2015)CrossRefGoogle Scholar
  19. 19.
    D. Gaston, C. Newman, G. Hansen, D. Lebrun-Grandie, Nucl. Eng. Des. 239, 1768 (2009)CrossRefGoogle Scholar
  20. 20.
    M.R. Tonks, D. Gaston, P.C. Millett, D. Andrs, P. Talbot, Comput. Mater. Sci. 51, 20 (2012)CrossRefGoogle Scholar
  21. 21.
    D.A. Knoll, D.E. Keyes, J. Comput. Phys. 193, 357 (2004)CrossRefGoogle Scholar
  22. 22.
    B.L. Silva, N. Cheung, A. Garcia, J.E. Spinelli, J. Alloys Compd. 632, 274 (2015)CrossRefGoogle Scholar
  23. 23.
    V.I. Dybkov, Chemical Kinetics (IPMS Publications, Kyiv, 2013)Google Scholar
  24. 24.
    O.M. Abdelhadi, L. Ladani, J. Alloys Compd. 537, 87 (2012)CrossRefGoogle Scholar
  25. 25.
    M.J. Rizvi, H. Lu, C. Bailey, Thin Solid Films 517, 1686 (2009)CrossRefGoogle Scholar
  26. 26.
    M.S. Park, R. Arroyave, J. Electron. Mater. 39, 2574 (2010)CrossRefGoogle Scholar
  27. 27.
    C.H. Ma, R.A. Swalin, Acta Metall. 8, 388 (1960)CrossRefGoogle Scholar
  28. 28.
    B. Chao, S.-H. Chae, X. Zhang, K.-H. Lu, J. Im, P.S. Ho, Acta Mater. 55, 2805 (2007)CrossRefGoogle Scholar
  29. 29.
    C. Chen, H.-Y. Hsiao, Y.-W. Chang, F. Ouyang, K.N. Tu, Mater. Sci. Eng. R Rep. 73, 85 (2012)CrossRefGoogle Scholar
  30. 30.
    J.H. Ke, H.Y. Chuang, W.L. Shih, C.R. Kao, Acta Mater. 60, 2082 (2012)CrossRefGoogle Scholar
  31. 31.
    H. Ye, C. Basaran, D.C. Hopkins, D. Frear, J.-K. Lin, in Electronic Components and Technology Conference (IEEE, 2004)Google Scholar
  32. 32.
    L. Meinshausen, H. Fremont, K. Weide-Zaage, B. Plano, Microelectron. Reliab. 53, 1575 (2013)CrossRefGoogle Scholar
  33. 33.
    C. Chen, H.M. Tong, K.N. Tu, Annu. Rev. Mater. Res. 40, 531 (2010)CrossRefGoogle Scholar
  34. 34.
    M.L. Huang, F. Yang, Sci. Rep. 4, 7117 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anil Kunwar
    • 1
  • Haoran Ma
    • 1
  • Haitao Ma
    • 1
  • Bingfeng Guo
    • 1
  • Zhixian Meng
    • 1
  • Ning Zhao
    • 1
  • Mingliang Huang
    • 1
  1. 1.School of Materials Science and EngineeringDalian University of TechnologyDalianChina

Personalised recommendations