Luminescence behavior of europium doped strontium magnesium silicate phosphor by solid state reaction method

  • Ishwar Prasad SahuEmail author
  • D. P. Bisen
  • R. N. Baghel
  • K. V. R. Murthy


The SrMgSi2O6:Eu2+ and SrMgSi2O6:Eu3+ phosphors were prepared by the traditional high temperature solid state reaction method. The crystal structures of sintered phosphors were an akermanite type structure which belongs to the tetragonal crystallography with space group \( {\text{P}}\overline{42}_{1} {\text{m}} \). The different TL kinetics parameters [activation energy (E), frequency factor (s) and order of the kinetics (b)] were evaluated and compared by the peak shape method. Under the ultra-violet excitation (340 nm), the SrMgSi2O6:Eu2+ phosphor would emit blue (468 nm) light, belonging to the broad emission band ascribed to the 4f65d1 → 4f7 transition. The emission spectrum (λex = 395 nm) of SrMgSi2O6:Eu3+ phosphor were consisted of two emission peaks at 590 and 614 nm, which were attributed to 5D0 → 7F1 and 5D0 → 7F2 of Eu3+ ions. The strongest excited band at 395 nm can be assigned to 7F0 → 5L6 transition of Eu3+ ions due to the typical f–f transitions within Eu3+ of 4f6 configuration. Commission International de I’Eclairage color coordinates of SrMgSi2O6:Eu2+ and SrMgSi2O6:Eu3+ phosphors were suitable as blue and orange–red light emitting phosphors respectively.


Glow Curve Trap Depth Glow Peak High Temperature Solid State Reaction Peak Shape Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Nagabhushana, D.V. Sunitha, S.C. Sharma, B.D. Prasad, B.M. Nagabhushana, R.P.S. Chakradhar, Enhanced luminescence by monovalent alkali metal ions in Sr2SiO4:Eu3+ nanophosphor prepared by low temperature solution combustion method. J. Alloys Compd. 595, 192–199 (2014)CrossRefGoogle Scholar
  2. 2.
    I.P. Sahu, D.P. Bisen, N. Brahme, R.K. Tamtakar, Luminescence enhancement of bluish-green Sr2Al2SiO7:Eu2+ phosphor by dysprosium co-doping. J. Lumin. 167, 278–288 (2015)CrossRefGoogle Scholar
  3. 3.
    Z.W. Zhang, Y. Wu, X. Shen, Y. Ren, W. Zhang, D. Wang, Enhanced novel orange red emission in Ca3(PO4)2:Sm3+ by charge compensation. Opt. Laser Technol. 62, 63–68 (2014)CrossRefGoogle Scholar
  4. 4.
    I.P. Sahu, D.P. Bisen, N. Brahme, R.K. Tamtakar, Studies on the luminescence behavior of SrCaMgSi2O7:Eu3+ phosphor by solid state reaction method. J. Mater. Sci. Mater. Electron. 27(2), 1828–1839 (2016)CrossRefGoogle Scholar
  5. 5.
    Y. Kojima, M. Numazawa, T. Umegaki, Fluorescent properties of a green- to red-emitting Eu3+, Tb3+ codoped amorphous calcium silicate phosphor. J. Lumin. 132, 2648–2652 (2012)CrossRefGoogle Scholar
  6. 6.
    A. Baran, S. Mahlik, M. Grinberg, E. Zych, High pressure and time-resolved luminescence spectra of Ca3Y2(SiO4)3 doped with Eu2+ and Eu3+. J. Phys. Condens. Matter 25, 025603 (2013)CrossRefGoogle Scholar
  7. 7.
    I.P. Sahu, D.P. Bisen, N. Brahme, Luminescent properties of green emitting Ca2MgSi2O7:Eu2+ phosphor by solid state reaction method. Lumin. J. Biol. Chem. Lumin. 30, 1125–1132 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Xua, L. Wang, L. Liu, D. Jia, R. Sheng, Influence of Gd3+ doping on the luminescent of Sr2P2O7:Eu3+ orange–red phosphors. J. Lumin. 146, 475–479 (2014)CrossRefGoogle Scholar
  9. 9.
    H. Liu, Y. Hao, H. Wang, J. Zhao, P. Huang, B. Xu, Luminescent properties of R+ doped Sr2SiO4:Eu3+ (R = Li+, Na+ and K+) red-emitting phosphors for white LEDs. J. Lumin. 131, 2422–2426 (2011)CrossRefGoogle Scholar
  10. 10.
    I.P. Sahu, D.P. Bisen, N. Brahme, R. Sharma, Luminescence properties of Eu2+ and Dy3+ doped Sr2MgSi2O7 and Ca2MgSi2O7 phosphors by solid state reaction method. Res. Chem. Intermed. 41(9), 6649–6664 (2015)CrossRefGoogle Scholar
  11. 11.
    I.P. Sahu, D.P. Bisen, N. Brahme, L. Wanjari, R.K. Tamtakar, Structural characterization and luminescence properties of bluish-green emitting SrCaMgSi2O7:Eu2+, Dy3+ phosphor by solid state reaction method. Res. Chem. Intermed. 41, 8797–8814 (2015)CrossRefGoogle Scholar
  12. 12.
    JCPDS file number 75-1736, JCPDS International Center for Diffraction DataGoogle Scholar
  13. 13.
    Z. He, X. Wang, W.M. Yen, Behavior of Mn2+ ions in the trapping process of SrMg(SiO3)2:Mn, Dy. J. Lumin. 122–123, 381–384 (2007)CrossRefGoogle Scholar
  14. 14.
    D. Jia, W. Jia, Y. Jia, Long persistent alkali-earth silicate phosphors doped with Eu2+, Nd3+. J. Appl. Phys. 101, 023520 (2007)CrossRefGoogle Scholar
  15. 15.
    I.P. Sahu, D.P. Bisen, N. Brahme, R.K. Tamrakar, Europium doped di-calcium magnesium di-silicate orange-red emitting phosphor by solid state reaction method. J. Radiat. Res. Appl. Sci. 8, 381–388 (2015)CrossRefGoogle Scholar
  16. 16.
    T. Katsumata, R. Sakai, S. Komuro, T. Morikawa, “Thermally stimulated and photostimulated luminescence from long duration phosphorescent SrAl2O4:Eu, Dy crystals. J. Electrochem. Soc. 150(5), H111–H114 (2003)CrossRefGoogle Scholar
  17. 17.
    Z. Yuan, C. Chang, D. Mao, W. Ying, Effect of composition on the luminescent properties of Sr4Al14O25:Eu2+, Dy3+ phosphors. J. Alloys Compd. 377(1–2), 268–271 (2004)CrossRefGoogle Scholar
  18. 18.
    F.M. Emen, N. Kulcu, A.N. Yazici, Synthesis, Characterization and luminescence properties of the long afterglow phosphor Ba4Al14O25:Eu, Dy. Eur. J. Chem. 1(1), 28–32 (2010)CrossRefGoogle Scholar
  19. 19.
    R. Chen, Glow curves with general order kinetics. J. Electrochem. Soc. 116, 1254–1257 (1969)CrossRefGoogle Scholar
  20. 20.
    V. Pagonis, G. Kitis, C. Furetta, Numerical and Practical Exercises in Thermoluminescence (Springer, Berlin, 2006)Google Scholar
  21. 21.
    I.P. Sahu, D.P. Bisen, N. Brahme, R.K. Tamtakar, Photoluminescence properties of europium doped di-strontium magnesium di-silicate phosphor by solid state reaction method. J. Radiat. Res. Appl. Sci. 8, 104–109 (2015)CrossRefGoogle Scholar
  22. 22.
    Z. Song, J. Liao, X. Ding, Q.L. Liu, T. Zhou, Stability of divalent/trivalent oxidation state of europium in some Sr-based inorganic compounds. J. Lumin. 132, 1768–1773 (2012)CrossRefGoogle Scholar
  23. 23.
    L. Ozawa, Cathodoluminescence and Photoluminescence: Theories and Practical Applications (CRC Press, Taylor & Francis Group, Boca Raton, 2007)CrossRefGoogle Scholar
  24. 24.
    J. Liu, K. Liang, Z.C. Wu, Y.M. Mei, S.P. Kuang, D.X. Li, The reduction of Eu3+ to Eu2+ in a new orange–red emission Sr3P4O13:Eu phosphor prepared in air and its photoluminescence properties. Ceram. Int. 40, 8827–8831 (2014)CrossRefGoogle Scholar
  25. 25.
    Y. Kojima, S. Kamei, N. Nishimiya, Preparation and fluorescence property of red-emitting Eu3+ activated amorphous calcium silicate phosphor. Mater. Res. Bull. 45, 121–123 (2010)CrossRefGoogle Scholar
  26. 26.
    H. Wu, Y. Hu, Y. Wang, F. Kang, Z. Mou, Investigation on Eu3+ doped Sr2MgSi2O7 red-emitting phosphors for white-light-emitting diodes. Opt. Laser Technol. 43, 1104–1110 (2011)CrossRefGoogle Scholar
  27. 27.
    A. Nag, T.R.N. Kutty, The light induced valence change of europium in Sr2SiO4: Eu involving transient crystal structure. J. Mater. Chem. 14(10), 1598 (2004)CrossRefGoogle Scholar
  28. 28.
    Q. Yanmin, Z. Xinbo, Y.E. Xiao, C. Yan, G. Hai, Photoluminescent properties of Sr2SiO4:Eu3+ and Sr2SiO4:Eu2+ phosphors prepared by solid-state reaction method. J. Rare Earths 27(2), 323–326 (2009)CrossRefGoogle Scholar
  29. 29.
    J. Yang, Z. Quan, D. Kong, X. Liu, J. Lin, Y2O3:Eu3+ micro-spheres: solothermal synthesis and luminescence properties. Cryst. Growth Des. 7(4), 730 (2007)CrossRefGoogle Scholar
  30. 30.
    R.K. Tamrakar, D.P. Bisen, K. Upadhyay, M. Sahu, I.P. Sahu, N. Brahme, Comparison of emitted color by pure Gd2O3 prepared by two different methods by CIE coordinates. Superlattices Microstruct. 8, 382–388 (2015)CrossRefGoogle Scholar
  31. 31.
    CIE, International Commission on Illumination. Publication CIE no. 15 (E-1.3.1) (1931)Google Scholar
  32. 32.
    T. Aitasalo, P. Daren, J. Holsa, K. Junger, J.C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, W. Strek, Persistent luminescence phenomena in materials doped with rare earth ions. J. Solid State Chem. 171, 114–119 (2003)CrossRefGoogle Scholar
  33. 33.
    P. Dorenbos, Mechanism of persistent luminescence in Sr2MgSi2O7:Eu2+; Dy3+. Phys. Status Solidi B 242, R7–R9 (2005)CrossRefGoogle Scholar
  34. 34.
    I.P. Sahu, D.P. Bisen, N. Brahme, R.K. Tamtakar, Studies on the luminescence properties of europium doped strontium alumino-silicate phosphors by solid state reaction method. J. Mater. Sci. Mater. Electron. 26, 10075–10086 (2015)CrossRefGoogle Scholar
  35. 35.
    P. Dorenbos, Systematic behaviour in trivalent lanthanide charge transfer energies. J. Phys. Condens. Matter 15, 8417–8434 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ishwar Prasad Sahu
    • 1
    Email author
  • D. P. Bisen
    • 1
  • R. N. Baghel
    • 1
  • K. V. R. Murthy
    • 2
  1. 1.School of Studies in Physics and AstrophysicsPt. Ravishankar Shukla UniversityRaipurIndia
  2. 2.Department of Applied PhysicsThe MS University of BarodaVadodaraIndia

Personalised recommendations