Advertisement

Simple synthesis and characterization of copper tungstate nanoparticles: investigation of surfactant effect and its photocatalyst application

  • S. Mostafa Hosseinpour-mashkani
  • Ali Sobhani-NasabEmail author
Article

Abstract

In the current study, an attempt is made to synthesize copper tungstate (CuWO4) nanoparticles via a large-scale and facile sonochemical method with the aid of copper (II) nitrate and sodium tungstate dihydrate in an aqueous solution. Besides, three polymeric surfactant agents such as polyvinylpyrrolidone, polyethylene glycol, and polyvinyl alcohol were used to investigate their effects on the morphology and particle size of CuWO4. XRD, SEM, EDS, and UV–Vis spectroscopy were employed to characterize structural, morphological, and optical properties of CuWO4 nanoparticles. According to the vibrating sample magnetometer result, CuWO4 nanoparticles indicated a paramagnetic behavior at room temperature. In addition, methyl orange was chosen as a dye water pollution to evaluate its degradation by as-synthesize copper tungstate under ultraviolet light irradiation. Furthermore, the photocatalysis results reveal that the maximum decolorization of 75 % for methyl orange occurred with CuWO4 nanoparticles in 90 min under ultraviolet light irradiation.

Keywords

Photocatalytic Degradation Methyl Orange Energy Dispersive Spectrometry Scheelite Sodium Tungstate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Authors are grateful to council of University of Arak for providing financial support to undertake this work.

References

  1. 1.
    F. Beshkar, M. Salavati-Niasari, J. NanoStruct. 5, 17 (2015)CrossRefGoogle Scholar
  2. 2.
    M. Ramezani, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, J. Mater. Sci. Mater. Electron. 26, 4848 (2015)CrossRefGoogle Scholar
  3. 3.
    A. Sobhani-Nasab, M. Maddahfar, S.M. Hosseinpour-Mashkani, J. Mol. Liq. 216, 1 (2016)CrossRefGoogle Scholar
  4. 4.
    M. Zahraei, A. Monshi, D. Shahbazi-Gahrouei, M. Amirnasr, B. Behdadfar, M. Rostami, J. NanoStruct. 5, 137 (2015)Google Scholar
  5. 5.
    S. Khaleghi, J. NanoStruct. 2, 157 (2012)Google Scholar
  6. 6.
    M. Aliahmad, A. Rahdar, Y. Azizi, J. NanoStruct. 4, 145 (2014)Google Scholar
  7. 7.
    M. Enhessari, M. Kargar-Razi, P. Moarefi, A. Parviz, J. NanoStruct. 2, 119 (2012)Google Scholar
  8. 8.
    M. Behpour, M. Mehrzad, S.M. Hosseinpour-Mashkani, J. NanoStruct. 5, 183 (2015)Google Scholar
  9. 9.
    M. Riazian, J. NanoStruct. 4, 433 (2014)Google Scholar
  10. 10.
    K. Saberyan, N.S. Mazhari, M. Rahiminezhad-Soltani, M.A. Mohsen, J. NanoStruct. 4, 185 (2014)Google Scholar
  11. 11.
    M. Behpour, M. Chakeri, J. NanoStruct. 2, 227 (2012)Google Scholar
  12. 12.
    Safaei-Ghomi, S. Zahedi, M. Javid, M.A. Ghasemzadeh, J. NanoStruct. 5, 153 (2015)CrossRefGoogle Scholar
  13. 13.
    M. Nik et al., J. Lumin. 87, 1136 (2000)Google Scholar
  14. 14.
    J. Ruiz-Fuertes et al., Phys. Rev. B. 86, 125202 (2012)CrossRefGoogle Scholar
  15. 15.
    J. Ruiz-Fuertes et al., Chem. Mater. 23, 4220 (2011)CrossRefGoogle Scholar
  16. 16.
    J. Ruiz-Fuertes et al., Phys. Rev. B. 81, 224115 (2010)CrossRefGoogle Scholar
  17. 17.
    S.M. Pourmortazavi et al., J. Inorg. Organomet. Polym Mater. 24, 333 (2014)CrossRefGoogle Scholar
  18. 18.
    B. Schwarz et al., Philosoph. Mag. 88, 1235 (2008)CrossRefGoogle Scholar
  19. 19.
    K.C. Liang et al., New J. Phys. 4, 073028 (2012)CrossRefGoogle Scholar
  20. 20.
    R. Bharati, R. Shanker, R.A. Singh, Pramana 14, 449 (1980)CrossRefGoogle Scholar
  21. 21.
    A. Martınez-Garcıa et al., J. Mater. Chem. A. 1, 15235 (2013)CrossRefGoogle Scholar
  22. 22.
    J.E. Yourey et al., J. Phys. Chem. C 117, 8708 (2013)CrossRefGoogle Scholar
  23. 23.
    K.J. Pyper, J.E. Yourey, B.M. Bartlett, J. Phys. Chem. C 117, 24726 (2013)CrossRefGoogle Scholar
  24. 24.
    P.K. Pandey, N.S. Bhave, R.B. Kharat, Mater. Lett. 59, 3149 (2005)CrossRefGoogle Scholar
  25. 25.
    N. Gaillard, Y. Chang, A. DeAngelis, S. Higgins, A. Braun, Int. J. Hydrogen Energy. 38, 3166 (2013)CrossRefGoogle Scholar
  26. 26.
    J.E. Yourey, B.M. Bartlett, J. Mater. Chem. 21, 7651 (2011)CrossRefGoogle Scholar
  27. 27.
    J.C. Hill, K.S. Choi, J. Mater. Chem. A. 1, 5006 (2013)CrossRefGoogle Scholar
  28. 28.
    S.K. Pilli et al., Phys. Chem. Chem. Phys. 15, 3273 (2013)CrossRefGoogle Scholar
  29. 29.
    K. Vignesh et al., J. Ind. Eng. Chem. 20, 435 (2014)CrossRefGoogle Scholar
  30. 30.
    O.Y. Khyzhun et al., J. Alloys Compd. 389, 14 (2005)CrossRefGoogle Scholar
  31. 31.
    S. Dey et al., Inor. Chem. 53, 4394 (2014)CrossRefGoogle Scholar
  32. 32.
    B. Lakey et al., J. Phys. Cond. Mater. 8, 8613 (1996)CrossRefGoogle Scholar
  33. 33.
    J.B. Forsytht, C. Wilkinsont, A.I. Zvyagin, J. Phys. Cond. Matter. 3, 8433 (1991)CrossRefGoogle Scholar
  34. 34.
    F. Yu, U. Schanz, E. Schmidbauer. 132, 606 (1993)Google Scholar
  35. 35.
    B. Lakey, R.A. Cowleyy, D.A. Tennantz, J. Phys. Cond. Mater. 9, 10951 (1997)CrossRefGoogle Scholar
  36. 36.
    K.S. Suslick, D.J. Flannigan, Annu. Rev. Phys. Chem. 259, 659 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. Mostafa Hosseinpour-mashkani
    • 1
  • Ali Sobhani-Nasab
    • 1
    Email author
  1. 1.Young Researchers and Elites Club, Arak BranchIslamic Azad UniversityArakIran

Personalised recommendations