High energy density dielectrics in lead-free Bi0.5Na0.5TiO3–NaNbO3–Ba(Zr0.2Ti0.8)O3 ternary system with wide operating temperature

  • Wenlin Tang
  • Qi Xu
  • Hanxing LiuEmail author
  • Zhonghua Yao
  • Hua Hao
  • Minghe Cao


The 0.6Bi0.5Na0.5TiO3–(0.4 − x)NaNbO3–xBa(Zr0.2Ti0.8)O3 (BNT–NN–BZT) ceramics were developed for application as high energy density capacitor by conventional solid-state reaction method, and their structure, dielectric and ferroelectric properties were investigated in detail. When BZT was introduced into the system, the crystal structure changed from tetragonal to pseudocubic. Temperature dependent dielectric permittivity showed a broad maximum in these pseudocubic ceramics, exhibitting distinct relaxor feature. The relaxor behavior was evaluated by modified Curie–Weiss and confirmed to be enhanced with increasing BZT content. Benefited from the relaxor feature, its dielectric constant and dielectric temperature stability were largely improved. The remanent polarization (Pr) and coercive electric field (Ec) decreased with high BZT content and the maximum polarization (Pm) improved as shown in ferroelectric hysteresis loops (P–E loops). The energy storage property was also improved with increasing BZT, the optimized energy storage property was obtained in x = 0.20 sample with W = 1.69 J/cm3 at 17.5 kV/mm, which was superior to many other ferroelectric relaxors, indicating that BNT–NN–BZT ceramics were promising candidates for temperature stable energy storage applications.


BaTiO3 NaNbO3 Energy Storage Density Energy Storage Application Energy Storage Capacitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Natural Science Foundation of China (No. 51372191), the National Key Basic Research Program of China (973 Program) (No. 2015CB654601), International Science and Technology Cooperation Program of China (2011DFA52680) and the Fundamental Research Funds for the Central Universities (WUT:152401002 and 152410002).


  1. 1.
    Randall C A, Ogihara H, Kim J R, et al, IEEE pulsed power conference, 346–351 (2009)Google Scholar
  2. 2.
    S. Kwon, W. Hackenberger, E. Alberta, E. Furman, M. Lanagan, IEEE Electr. Insul. Mag. 27, 43–55 (2011)CrossRefGoogle Scholar
  3. 3.
    P. Hagler, P. Henson, R.W. Johnson, IEEE Trans. Ind. Electron. 58, 2673–2682 (2011)CrossRefGoogle Scholar
  4. 4.
    Z. Hu, B. Ma, S. Liu, M. Narayanan, U. Balachandran, Ceram Int. 40, 557–562 (2014)CrossRefGoogle Scholar
  5. 5.
    X. Wang, L. Zhang, X. Hao, S. An, B. Song, J. Mater. Sci. Mater. Electron. 26, 9583–9590 (2015)CrossRefGoogle Scholar
  6. 6.
    H. Ogihara, C.A. Randall, S. Trolier-McKinstry, J. Am. Ceram Soc. 92, 110–118 (2009)CrossRefGoogle Scholar
  7. 7.
    D.H. Choi, A. Baker, M. Lanagan, S. Trolier-McKinstry, C. Randall et al., J. Am. Ceram Soc. 96, 2197–2202 (2013)CrossRefGoogle Scholar
  8. 8.
    A. Chauhan, S. Patel, R. Vaish, AIP Adv. 4, 087106 (2014)CrossRefGoogle Scholar
  9. 9.
    Q. Xu, T. Li, H. Hao, S. Zhang, Z. Wang et al., J. Eur. Ceram Soc. 35, 545–553 (2015)CrossRefGoogle Scholar
  10. 10.
    Q. Xu, Z. Song, W. Tang, H. Hao, L. Zhang et al., J. Am. Ceram Soc. 98, 3119–3126 (2015)CrossRefGoogle Scholar
  11. 11.
    B. Wang, L. Luo, X. Jiang, W. Li, H. Chen, J. Alloys Compd. 585, 14–18 (2014)CrossRefGoogle Scholar
  12. 12.
    T.M. Correia, M. McMillen, M.K. Rokosz, P.M. Weaver, J.M. Gregg et al., J. Am. Ceram Soc. 96, 2699–2702 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Wang, Z. Lv, H. Xie, J. Cao, Ceram Int. 40, 4323–4326 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Ye, Y. Liu, Y. Lu, J. Ding, C. Ma et al., J. Mater. Sci. Mater. Electron. 25, 4632–4637 (2014)CrossRefGoogle Scholar
  15. 15.
    V.V. Shvartsman, D.C. Lupascu, D.J. Green, J. Am. Ceram Soc. 95, 1–26 (2012)CrossRefGoogle Scholar
  16. 16.
    W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.-J. Kleebe et al., J. Appl. Phys. 110, 074106 (2011)CrossRefGoogle Scholar
  17. 17.
    B. Parija, T. Badapanda, S.K. Rout, L.S. Cavalcante, S. Panigrahi et al., Ceram Int. 39, 4877–4886 (2013)CrossRefGoogle Scholar
  18. 18.
    C. Peng, J.-F. Li, W. Gong, Mater. Lett. 59, 1576–1580 (2005)CrossRefGoogle Scholar
  19. 19.
    X. Zhou, C. Yuan, Q. Li et al., J. Mater. Sci: Mater. Electron. (2015). doi: 10.1007/s10854-015-4247-x Google Scholar
  20. 20.
    X. Tan, E. Aulbach, W. Jo, T. Granzow, J. Kling et al., J. Appl. Phys. 106, 044107 (2009)CrossRefGoogle Scholar
  21. 21.
    J.B. Lim, S. Zhang, N. Kim, T.R. Shrout, J. Am. Ceram Soc. 92, 679–682 (2009)CrossRefGoogle Scholar
  22. 22.
    R.D. Shannon, Acta Crystallogr. B 25, 925–945 (1969)CrossRefGoogle Scholar
  23. 23.
    B. Niu, W. Ma, Q. Li, T. Chen, Z. Huan et al., J. Mater. Sci. Mater. Electron. 26, 916–920 (2015)CrossRefGoogle Scholar
  24. 24.
    Y. Cui, X. Fu, K. Yan, J. Inorg. Organomet. Polym Mater. 22, 82–85 (2012)CrossRefGoogle Scholar
  25. 25.
    C. Ma, X. Tan, E. Dul’kin, M. Roth, J. Appl. Phys. 108, 104105 (2010)CrossRefGoogle Scholar
  26. 26.
    L. Cui, Y.-D. Hou, S. Wang, C. Wang, M.-K. Zhu, J. Appl. Phys. 107, 054105 (2010)CrossRefGoogle Scholar
  27. 27.
    H.Y. Ma, X.M. Chen, J. Wang, K.T. Huo, H.L. Lian et al., Ceram Int. 39, 3721–3729 (2013)CrossRefGoogle Scholar
  28. 28.
    X. Huang, H. Hao, S. Zhang, H. Liu, W. Zhang et al., J. Am. Ceram Soc. 97, 1797–1801 (2014)CrossRefGoogle Scholar
  29. 29.
    B.K. Barick, R.N.P. Choudhary, D.K. Pradhan, Ceram Int. 39, 5695–5704 (2013)CrossRefGoogle Scholar
  30. 30.
    S. Zheng, E. Odendo, L. Liu, D. Shi, Y. Huang et al., J. Appl. Phys. 113, 094102 (2013)CrossRefGoogle Scholar
  31. 31.
    C. Yuan, L. Meng, Y. Liu, C. Zhou, G. Chen et al., J. Mater. Sci. Mater. Electron. 26, 8793–8797 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Wenlin Tang
    • 1
  • Qi Xu
    • 1
  • Hanxing Liu
    • 1
    Email author
  • Zhonghua Yao
    • 1
  • Hua Hao
    • 1
  • Minghe Cao
    • 1
  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations