Borosilicate glass nanolayer as a spin-on dopant source: FTIR and spectroscopic ellipsometry investigations

  • T. S. Perova
  • M. Nolan-Jones
  • J. McGilp
  • H. S. Gamble
Article

Abstract

Borosilicate glass is a potential dopant source for producing shallow boron junctions by the use of proximity rapid thermal diffusion. Interest in this technique has increased recently due to its application to the manufacture of solar cells. A borosilicate gel is spun onto a silicon wafer and the layer is rapidly thermally annealed to convert it to a borosilicate glass (BSG). Fourier transform infrared (FTIR) spectroscopy, spectroscopic ellipsometry and sheet-resistance measurements have been used to understand and subsequently optimise the conversion of the gel to a BSG nanolayer. Physical properties of the thin, spun-on layer, such as thickness, refractive index and porosity, were monitored. The optimum conversion step involved rapid thermal annealing for 45 s at 900 °C. This avoided any boron loss from the BSG layer during the thermal processing step. The position of the B–O stretching vibration around 1370 cm−1 was found to be sensitive to boron outdiffusion and it is suggested that FTIR spectroscopy provides a simple method for monitoring the outdiffusion of boron from the spin-on dopant nanolayer. Further FTIR studies using p-polarised light at oblique incidence revealed, for the first time, the LO–TO phonon splitting of the B–O stretching vibration band in the glassy layer. Investigation of the stability of BSG layers over long periods showed that unstabilised (or undensified) BSG films demonstrate a dramatic loss of boron over 6 months.

References

  1. 1.
    M. Ilyas, C.A. Hogarth, The optical absorption edge of amorphous thin films of borosilicate glass. J. Mater. Sci. Lett. 2, 535–537 (1983)CrossRefGoogle Scholar
  2. 2.
    G. Sanchez, J.L. Castano, J. Garrido, J. Martinez, J. Piqueras, Direct writing laser doping from spun-on glasses. J. Electrochem. Soc. 138, 3039–3042 (1991)CrossRefGoogle Scholar
  3. 3.
    C.D. Bagratishvili, R.B. Dzhanelidze, D.A. Jishiashvili, L.V. Piskanovskii, Z.N. Shiolashvili, Boron diffusion from a reactively sputtered glass source in Si and SiO2. Phys. Stat. Sol. (a) 56, 27–35 (1979)CrossRefGoogle Scholar
  4. 4.
    M. Miyake, Diffusion of boron into silicon from borosilicate glass using rapid thermal processing. J. Electrochem. Soc. 138, 3031–3039 (1991)CrossRefGoogle Scholar
  5. 5.
    D.J. Taylor, D.Z. Dent, D.N. Braski, B.D. Fabes, Boron loss in furnace- and laser-fired, sol–gel derived borosilicate glass films. J. Mater. Res. 11, 1870–1873 (1996)CrossRefGoogle Scholar
  6. 6.
    M. Nogami, Y. Moriya, Glass formation of the SiO2–B2O3 system by the gel process from metal alkoxides. J. Non-Cryst. Solids 48, 359–366 (1982)CrossRefGoogle Scholar
  7. 7.
    A.D. Irwin, J.S. Holmgren, T.W. Zerda, J. Jonas, Spectroscopic investigations of borosiloxane bond formation in the sol–gel process. J. Non-Cryst. Solids 89, 191–205 (1987)CrossRefGoogle Scholar
  8. 8.
    B. D. Fabes, B. J. J. Zelinski, D. R. Uhlmann, in Ceramic Films and Coatings, ed. by J. B. Watchman, R. A. Haber (Noyes, 1992)Google Scholar
  9. 9.
    W. Zagozdzon-Wosik, J.C. Wolfe, C.W. Teng, Doping of trench capacitors by rapid thermal diffusion. IEEE Electron. Dev. Lett. 12, 264–266 (1991)CrossRefGoogle Scholar
  10. 10.
    M. Nolan, T. Perova, R.A. Moore, H.S. Gamble, Boron diffusion from a spin-on source during rapid thermal processing. J. Non-Cryst. Solids 254, 89–93 (1999)CrossRefGoogle Scholar
  11. 11.
    J.Y. Lee, S.H. Lee, Boron back surface field using spin-on dopants by rapid thermal processing. J. Korean Phys. Soc. 44, 1581–1586 (2004)Google Scholar
  12. 12.
    J. Jourdan, Y. Veschetti, S. Dubois, T. Desrues, R. Monna, Formation of boron-doped region using spin-on dopant investigation on the impact of metallic impurities. Prog. Photovolt. Res. Appl. 16, 379–387 (2008)CrossRefGoogle Scholar
  13. 13.
    S. Barth, O. Doll, I. Koehler, K. Neckermann, M. Blech, A. Lawerenz, A. Edler, R. Kopecek, J.J. Schneider, 19.4 Efficient bifacial solar cell with spin-on boron diffusion. Energy Procedia 38, 410–415 (2013)CrossRefGoogle Scholar
  14. 14.
    A. Yadav, G. Singh, R. Nekovei, R. Jeyakumar, c-Si solar cells formed from spin-on phosphoric acid and boric acid. Renew. Energy 80, 80–84 (2015)CrossRefGoogle Scholar
  15. 15.
    M. Nolan, T.S. Perova, A.R. Moore, C. Beitia, J. McGilp, H. Gamble, Spectroscopic investigations of borosilicate glass and its application as a dopant source for shallow junctions. J. Electrochem. Soc. 147, 3100–3105 (2000)CrossRefGoogle Scholar
  16. 16.
    W. Zagozdzon-Wosik, P. Grabiec, G. Lux, Silicon doping from phosphorus spin-on dopant sources in proximity rapid thermal diffusion. J. Appl. Phys. 75, 337–344 (1994)CrossRefGoogle Scholar
  17. 17.
    P. Grabiec, W. Zagozdzon-Wosik, G. Lux, Kinetics of phosphorous proximity rapid thermal diffusion using spin-on Dopant source for shallow junction fabrication. J. Appl. Phys. 78, 204–211 (1995)CrossRefGoogle Scholar
  18. 18.
    R.M. Almeida, C.G. Pantano, Structural Investigation of silica gel films by infrared spectroscopy. J. Appl. Phys. 68, 4225–4232 (1990)CrossRefGoogle Scholar
  19. 19.
    L. Ventura, B. Hartiti, A. Slaoui, J.-C. Muller, P. Siffert, Rapid thermal annealing of spin-on glass films. Mater. Res. Soc. Symp. Proc. 284, 197 (1993)CrossRefGoogle Scholar
  20. 20.
    A. Slaoui, L. Ventura, A. Lachig, R. Monna, J.C. Muller, Rapid isothermal annealing of doped and undoped spin-on glass. Mater. Res. Soc. Symp. Proc. 387, 365 (1995)CrossRefGoogle Scholar
  21. 21.
    D.M. Haaland, C.J. Brinker, In situ FT-IR studies of oxide and oxynitride sol–gel-derived thin films. Mater. Res. Soc. Symp. Proc. 32, 267 (1984)CrossRefGoogle Scholar
  22. 22.
    M. Rastogi, W. Zagozdzon-Wosik, F. Romero-Borja, J.M. Haddleson, R. Beavers, P. Grabliec, L.T. Wood, Boron doping using proximity rapid thermal diffusion from spin-on-dopants. Mater. Res. Soc. Symp. Proc. 342, 369 (1994)CrossRefGoogle Scholar
  23. 23.
    W. Kern, RCA Rev. 32, 429 (1971)Google Scholar
  24. 24.
    J. Wong, A review of infrared spectroscopic studies of vapour-deposited dielectric glass films on silicon. J. Electron. Mater. 5, 113–160 (1976)CrossRefGoogle Scholar
  25. 25.
    W. A. Pliskin, in Semiconductor Silicon, ed. by H. R. Huff and R. R. Burgess (Electrochemical Society, Pennington, 1973) p. 506Google Scholar
  26. 26.
    A.S. Tenney, Nondestructive determination of the composition and thickness of thin films of pyrolytically deposited borosilicate glass by infrared absorption. J. Electrochem. Soc. 118, 1658–1661 (1971)CrossRefGoogle Scholar
  27. 27.
    E.A. Taft, Infrared absorption of chemical vapor deposited borosilicate glass films. J. Electrochem. Soc. 118, 1985–1988 (1971)CrossRefGoogle Scholar
  28. 28.
    A.S. Tenney, J. Wong, Vibrational spectra of vapor-deposited binary borosilicate glasses. J. Chem. Phys. 56, 5516 (1972)CrossRefGoogle Scholar
  29. 29.
    W. Kern, G.L. Schnabel, RCA Rev. 43, 423 (1982)Google Scholar
  30. 30.
    W. Kern, W.A. Kurylo, C.J. Tino, Optimized chemical vapor deposition of borophosphosilicate glass films. RCA Rev. 46, 117–152 (1985)Google Scholar
  31. 31.
    F.S. Becker, D. Pawlik, H. Shäfer, G. Staudigl, Process and film characterization of low pressure tetraethylorthosilicate–borophosphosilicate glass. J. Vac. Sci. Technol. B4, 732–745 (1986)CrossRefGoogle Scholar
  32. 32.
    J.E. Franke, T.M. Niemczyk, D. Haaland, Infrared spectroscopic techniques for quantitative characterization of dielectric thin films on silicon wafers. Spectrochim. Acta 50A, 1687–1723 (1994)CrossRefGoogle Scholar
  33. 33.
    R.A. Carpio, J. Taylor, Advanced optical characterization techniques for borosilicate films. Proc. SPIE 2638, 38–45 (1998)CrossRefGoogle Scholar
  34. 34.
    T.W. Dyer, Moisture instability of borophosphosilicate glass and the effect of thermal treatment. J. Electrochem. Soc. 145, 3950–3956 (1998)CrossRefGoogle Scholar
  35. 35.
    S. Rojas, R. Comarasca, L. Zanotti, A. Borghesi, S. Sassella, G. Ottaviani, L. Moro, P. Lazzeri, Properties of borophosphosilicate glass films deposited by different chemical vapor deposition techniques. J. Vac. Sci. Technol. B10, 633–642 (1992)CrossRefGoogle Scholar
  36. 36.
    L.D. Madsen, A.C. de Wilton, J.S. Mercier, Examination of the stability of borophosphosilicate glass films. Chemtronics 5, 35–42 (1991)Google Scholar
  37. 37.
    D.M. Haaland, Quantitative infrared analysis of borophosphosilicate films using multivariate statistical methods. Anal. Chem. 60, 1208–1217 (1988)CrossRefGoogle Scholar
  38. 38.
    I. Susuki, M. Ejima, K. Watanabe, Y. Xiong, T. Saitoh, Thin Solid Films 313–314, 214 (1998)CrossRefGoogle Scholar
  39. 39.
    B. Drevillon, Spectroscopic ellipsometry in the infrared range. Thin Solid Films 313–314, 625–630 (1998)CrossRefGoogle Scholar
  40. 40.
    S. Bruynooghe, F. Bertin, A. Chabli, J.-C. Blanchard, M. Couchaud, Infrared spectroscopic ellipsometry for residual water detection in annealed sol–gel thin layers. Thin Solid Films 313–314, 722–726 (1998)CrossRefGoogle Scholar
  41. 41.
    M.A. Villegas, J.M. Fernández Navarro, Characterization of B2O3–SiO2 glasses prepared via sol-gels. J. Mater. Sci. 23, 2464–2478 (1988)CrossRefGoogle Scholar
  42. 42.
    A.M. Efimov, Quantitative IR spectroscopy: applications to studying glass structure and properties. J. Non-Cryst. Solids 203, 1–11 (1996)CrossRefGoogle Scholar
  43. 43.
    P. Broadhead, G.A. Newman, The vibrational spectra of orthoboric acid and its thermal decomposition products. J. Mol. Struct. 10, 157–172 (1971)CrossRefGoogle Scholar
  44. 44.
    A.M. Efimov, Water related bands in the IR absorption spectra of silicate glasses. J. Non-Cryst. Solids 332, 93–114 (2003)CrossRefGoogle Scholar
  45. 45.
    C. Gautan, Synthesis, structural and optical investigation of (Pb, Bi)TiO3 borosilicate glasses. Phys. Res. Intern., 2014, 1–7(2014). Article ID 606709Google Scholar
  46. 46.
    G. Lucovsky, M.J. Manitini, J.K. Srivastava, E.A. Irene, Low-temperature growth of silicon dioxide films: a study of chemical bonding by ellipsometry and infrared spectroscopy. J. Vac. Sci. Technol. B5, 530–537 (1987)CrossRefGoogle Scholar
  47. 47.
    A. Lehmann, L. Schumann, K. Hubner, Optical phonons in amorphous silicon oxides. II. Calculation of phonon spectra and interpretation of the IR transmission of SiOx. Phys. Stat. Solidi B121, 505–511 (1984)CrossRefGoogle Scholar
  48. 48.
    C. Martinet, R.A.B. Devine, Analysis of the vibrational mode spectra of amorphous SiO2 films. J. Appl. Phys. 77, 4343–4348 (1995)CrossRefGoogle Scholar
  49. 49.
    A.C. Angood, J.L. Koenig, Effect of nonrandom polymer chain orientation in the thickness direction on infrared absorption measurements. Macromolecules 2, 37–41 (1969)CrossRefGoogle Scholar
  50. 50.
    F.L. Galeener, A.J. Leadbetter, M.W. Stringfellow, Comparison of the neutron, Raman, and infrared vibrational spectra of vitreous Si02, GeO2, and BeF2. Phys. Rev. B 27, 1052–1078 (1983)CrossRefGoogle Scholar
  51. 51.
    S.W. de Leeuw, M.F. Thorpe, Coulomb splittings in glasses. Phys. Rev. Lett. 55, 2879–2882 (1985)CrossRefGoogle Scholar
  52. 52.
    F.L. Galeener, G. Lukovsky, Longitudinal optical vibrations in glasses: GeO2 and SiO2. Phys. Rev. Lett. 37, 1476–1478 (1976)CrossRefGoogle Scholar
  53. 53.
    D.W. Berreman, Infrared absorption at longitudinal optic frequency in cubic crystal films. Phys. Rev. 130, 2193–2198 (1963)CrossRefGoogle Scholar
  54. 54.
    K. Hubner, L. Schumann, A. Lehmann, H.H. Vajen, G. Zuther, Detection of LO and TO phonons in amorphous SiO2 films by oblique incidence of IR light. Phys. Stat. Solidi B104, K1–K5 (1981)CrossRefGoogle Scholar
  55. 55.
    J.E. Olsen, F. Shimura, Infrared reflection spectroscopy of the SiO2-silicon interface. J. Appl. Phys. 66, 1353–1358 (1989)CrossRefGoogle Scholar
  56. 56.
    R.M. Almeida, Detection of LO modes in glass by infrared reflection spectroscopy at oblique incidence. Phys. Rev. B 45, 161–170 (1992)CrossRefGoogle Scholar
  57. 57.
    I.I. Shaganov, T.S. Perova, A.R. Moore, K. Berwick, Spectroscopic characterisation of SiO and SiO2 solid films assignment and local field influence. J. Mater. Sci. Mater. Electron. 12, 351–355 (2001)CrossRefGoogle Scholar
  58. 58.
    R.A.B. Devine, Structural nature of the Si/SiO2 interface through infrared spectroscopy. Appl. Phys. Lett. 68, 3108–3110 (1996)CrossRefGoogle Scholar
  59. 59.
    G. Xiong, G. Lan, H. Wang, C. Huang, Infrared reflectance and Raman spectra of lithium triborate single crystal. J. Raman Spectrosc. 24, 785–789 (1993)CrossRefGoogle Scholar
  60. 60.
    A.F. Perveev, G.A. Muranova, V.M. Zolotarev, Sov. Solid State Phys. 14, 2510 (1972)Google Scholar
  61. 61.
    I.I. Shaganov, Manifestation of local field effects in the properties of optical materials and coatings. Sov. J. Opt. Technol. 59, 1–11 (1992)Google Scholar
  62. 62.
    R.M. Levin, Water absorption and densification of phosphosilicate glass films. J. Electrochem. Soc. 129, 1765–1770 (1982)CrossRefGoogle Scholar
  63. 63.
    T.S. Izumitani, Optical glass (American Institute of Physics, New York, 1986), p. 17Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • T. S. Perova
    • 1
    • 2
  • M. Nolan-Jones
    • 1
    • 5
  • J. McGilp
    • 3
  • H. S. Gamble
    • 4
  1. 1.Department of Electronic and Electrical Engineering, Trinity College DublinThe University of DublinDublin 2Ireland
  2. 2.ITMO UniversitySaint PetersburgRussia
  3. 3.School of Physics, Trinity College DublinThe University of DublinDublin 2Ireland
  4. 4.Department of Electronic EngineeringThe Queen’s University of BelfastBelfastNorthern Ireland, UK
  5. 5.Intel Ireland, Ltd.LeixlipIreland

Personalised recommendations