Skip to main content
Log in

Size-controllable synthesis of Fe3O4 nanospheres decorated graphene for electromagnetic wave absorber

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A large-area reduced graphene oxide (RGO)/Fe3O4 nanocomposite has been synthesized for electromagnetic wave absorber by a simple hydrothermal method. A series of characterization methods including transmission electron microscopy, X-ray diffraction, Raman spectroscopy and vibrating sample magnetometer indicate that masses of Fe3O4 nanospheres are well decorated on the thin RGO sheets and the nanocomposite exhibit ferromagnetic behavior at room temperature. Moreover, the size of Fe3O4 nanospheres which are decorated on RGO surface can be controlled by adjusting the concentration of FeCl3·6H2O in ethylene glycol/diethylene glycol binary solvent mixtures. Electromagnetic wave absorption properties of the as-synthesized nanocomposite have been investigated by a vector network analyzer between 2 and 18 GHz at room temperature. The electromagnetic data demonstrate that the Fe3O4/RGO nanocomposite can be a powerful candidate in the field of electromagnetic wave absorption, which probably originates from the proper electromagnetic match and strong electromagnetic wave attenuation in the materials. A possible formation mechanism of Fe3O4/RGO nanocomposite based on the hydrothermal method has also been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.B. Ni, X.L. Sun, X.H. Wang, G. Zhou, F. Yang, J.M. Wang, D.Y. He, Mater. Chem. Phys. 124, 353–358 (2010)

    Article  Google Scholar 

  2. L. Wang, Y. Huang, X. Ding, P.B. Liu, M. Zong, X. Sun, Y. Wang, Y. Zhao, Mater. Lett. 109, 146–150 (2013)

    Article  Google Scholar 

  3. B. Zhao, G. Shao, B.B. Fan, W.Y. Zhao, R. Zhang, A.C.S. Appl, Mater. Interfaces 7, 18815–18823 (2015)

    Article  Google Scholar 

  4. J.W. Liu, J. Cheng, R.C. Che, J.J. Xu, M.M. Liu, Z.W. Liu, J. Phys. Chem. C 117, 489–495 (2013)

    Article  Google Scholar 

  5. D.Z. Chen, H.Y. Quan, Z.N. Huang, S.L. Luo, X.B. Luo, F. Deng, H.L. Jiang, G.S. Zeng, Compos. Sci. Technol. 102, 126–131 (2014)

    Article  Google Scholar 

  6. M. Verma, A. Pratap Singh, P. Sambyal, B. Pratap Singh, S.K. Dhawan, V. Choudhary, Phys. Chem. Chem. Phys. 17, 1610–1618 (2015)

    Article  Google Scholar 

  7. F. Wu, Y.L. Xia, Y. Wang, M.Y. Wang, J. Mater. Chem. A 2, 20307–20315 (2014)

    Article  Google Scholar 

  8. P.B. Liu, Y. Huang, L. Wang, W. Zhang, Synth. Met. 177, 89–93 (2013)

    Article  Google Scholar 

  9. X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, J.F. Liang, L. Guo, M.S. Cao, A.C.S. Appl, Mater. Interfaces 6, 7471–7478 (2014)

    Article  Google Scholar 

  10. L.G. Yan, J.B. Wang, X.H. Han, Y. Ren, Q.F. Liu, F.S. Li, Nanotechnology 21, 095708 (2010)

    Article  Google Scholar 

  11. W.C. Ye, J.J. Fu, Q. Wang, C.M. Wang, D.S. Xue, J. Magn. Magn. Mater. 395, 147–151 (2015)

    Article  Google Scholar 

  12. M. Zong, Y. Huang, N. Zhang, Appl. Surf. Sci. 345, 272–278 (2015)

    Article  Google Scholar 

  13. H. Zhang, X.Y. Tian, C.P. Wang, H.L. Luo, J. Hua, Y.H. Shen, A.J. Xie, Appl. Surf. Sci. 314, 228–232 (2014)

    Article  Google Scholar 

  14. Z.W. Yang, Y.Z. Wan, G.Y. Xiong, D.Y. Li, Q.P. Li, C.Y. Ma, R.S. Guo, H.L. Luo, Mater. Res. Bull. 61, 292–297 (2015)

    Google Scholar 

  15. T.H. Wang, Y.F. Li, L.N. Wang, C. Liu, S. Geng, X.L. Jia, F. Yang, L.Q. Zhang, L.P. Liu, B. You, X. Ren, H.T. Yang, RSC Adv. 5, 60114–60120 (2015)

    Article  Google Scholar 

  16. C. Sun, W. Jiang, Y.J. Wang, D.P. Sun, J. Liu, P.Y. Li, F.S. Li, Phys. Status Solidi RRL 8, 141–145 (2014)

    Article  Google Scholar 

  17. M. Zong, Y. Huang, Y. Zhao, X. Sun, C.H. Qu, D.D. Luo, J.B. Zheng, RSC Adv. 3, 23638–23648 (2013)

    Article  Google Scholar 

  18. H. Zhang, A.J. Xie, C.P. Wang, H.S. Wang, Y.H. Shen, X.Y. Tian, RSC Adv. 4, 14441–14446 (2014)

    Article  Google Scholar 

  19. D.P. Sun, Q. Zou, G.Q. Qian, C. Sun, W. Jiang, F.S. Li, Acta Mater. 61, 5829–5834 (2013)

    Article  Google Scholar 

  20. G.Q. Wang, Y.F. Chang, L.F. Wang, L.D. Liu, C. Liu, Mater. Res. Bull. 48, 1007–1012 (2013)

    Article  Google Scholar 

  21. W. Zhang, L.G. Gai, Z.L. Li, H.H Jiang, W.Y. Ma. J. Phys. D Appl. Phys. 41, 225001 (2008)

    Article  Google Scholar 

  22. Y.P. Wang, D.P. Sun, G.Z. Liu, Y.J. Wang, W. Jiang, J. Electron. Mater. 44, 2292–2299 (2015)

    Article  Google Scholar 

  23. D.P. Sun, Q. Zou, Y.P. Wang, Y.J. Wang, W. Jiang, F.S. Li, Nanoscale 6, 6557–6562 (2014)

    Article  Google Scholar 

  24. Z.T. Zhu, X. Sun, G.X. Li, H.R. Xue, H. Guo, X.L. Fan, X.C. Pan, J.P. He, J. Magn. Magn. Mater. 377, 95–103 (2015)

    Article  Google Scholar 

  25. X. Ding, Y. Huang, M. Zong, Mater. Lett. 157, 285–289 (2015)

    Article  Google Scholar 

  26. F. Wu, A.M. Xie, M.X. Sun, Y. Wang, M.Y. Wang, J. Mater. Chem. A 3, 14358–14369 (2015)

    Article  Google Scholar 

  27. G.S. Wang, Y. Wu, Y.Z. Wei, X.J. Zhang, Y. Li, L.D. Li, B. Wen, P.G. Yin, L. Guo, M.S. Cao, ChemPlusChem 79, 375–381 (2014)

    Article  Google Scholar 

  28. H.C. He, F.F. Luo, N. Qian, N. Wang, J. Appl. Phys. 117, 085502 (2015)

    Article  Google Scholar 

  29. G.X. Tong, J.H. Yuan, J. Ma, J.G. Guan, W.H. Wu, L.C. Li, R. Qiao, Mater. Chem. Phys. 129, 1189–1194 (2011)

    Article  Google Scholar 

  30. Y.P. Wang, Z. Peng, W. Jiang, J. Mater. Sci.: Mater. Electron. 26, 4880–4887 (2015)

    Google Scholar 

  31. Y.B. Li, G. Chen, Q.H. Li, G.Z. Qiu, X.H. Liu, J. Alloys Compd. 509, 4104–4107 (2011)

    Article  Google Scholar 

  32. X.B. Li, S.W. Yang, J. Sun, P. He, X.P. Pu, G.Q. Ding, Synth. Met. 194, 52–58 (2014)

    Article  Google Scholar 

  33. X.G. Liu, D.Y. Geng, H. Meng, P.J. Shang, Z.D. Zhang, Appl. Phys. Lett. 92, 173117 (2008)

    Article  Google Scholar 

  34. B. Zhao, G. Shao, B.B. Fan, Y.J. Xie, B. Sun, R. Zhang, Adv. Powder Technol. 25, 1761–1766 (2014)

    Article  Google Scholar 

  35. Y.P. Wang, D.P. Sun, G.Z. Liu, W. Jiang, Adv. Powder Technol. 26, 1537–1543 (2015)

    Article  Google Scholar 

  36. Y.J. Chen, G. Xiao, T.S. Wang, Q.Y. Ouyang, L.H. Qi, Y. Ma, P. Gao, C.L. Zhu, M.S. Cao, H.B. Jin, J. Phys. Chem. C 115, 13603–13608 (2011)

    Article  Google Scholar 

  37. Y.M. Wang, Z. Luo, R.Y. Hong, Mater. Lett. 65, 3241–3244 (2011)

    Article  Google Scholar 

  38. X.A. Li, B. Zhang, C.H. Ju, X.J. Han, Y.C. Du, P. Xu, J. Phys. Chem. C 115, 12350–12357 (2011)

    Article  Google Scholar 

  39. B. Zhao, G. Shao, B.B. Fan, W.Y. Zhao, Y.J. Xie, R. Zhang, Phys. Chem. Chem. Phys. 17, 8802–8810 (2015)

    Article  Google Scholar 

  40. Y.J. Chen, P. Gao, R.X. Wang, C.L. Zhu, L.J. Wang, M.S. Cao, H.B. Jin, J. Phys. Chem. C 113, 10061–10064 (2009)

    Article  Google Scholar 

  41. G.Q. Wang, Y.F. Chang, L.F. Wang, C. Liu, Adv. Powder Technol. 6, 861–865 (2012)

    Article  Google Scholar 

  42. P.A. Miles, W.B. Westphal, A. Von Hippel, Rev. Mod. Phys. 29, 279–307 (1957)

    Article  Google Scholar 

  43. J.W. Liu, R.C. Che, H.J. Chen, F. Zhang, F. Xia, Q.S. Wu, M. Wang, Small 8, 1214–1221 (2012)

    Article  Google Scholar 

  44. J. Yang, J. Zhang, C.Y. Liang, M. Wang, P.F. Zhao, M.M. Liu, J.W. Liu, R.C. Che, A.C.S. Appl, Mater. Interfaces 5, 7146–7151 (2013)

    Article  Google Scholar 

  45. C.L. Zhu, M.L. Zhang, Y.J. Qiao, G. Xiao, F. Zhang, Y.J. Chen, J. Phys. Chem. C 114, 16229–16235 (2010)

    Article  Google Scholar 

  46. B. Zhao, G. Shao, B.B. Fan, W.Y. Zhao, S.H. Zhang, K.K. Guan, R. Zhang, J. Mater. Chem. C 3, 10862–10869 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported under the Shanghai Aerospace Science and Technology Innovation Fund (SAST2015020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Peng, Z. & Jiang, W. Size-controllable synthesis of Fe3O4 nanospheres decorated graphene for electromagnetic wave absorber. J Mater Sci: Mater Electron 27, 6010–6019 (2016). https://doi.org/10.1007/s10854-016-4524-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4524-3

Keywords

Navigation