Effect of Hf doping on the structural, dielectric and optical properties of CaCu3Ti4O12 ceramic

  • Ravikiran Late
  • Hari Mohan Rai
  • Shailendra K. Saxena
  • Rajesh Kumar
  • Archna Sagdeo
  • Pankaj R. SagdeoEmail author


Ceramic samples of CaCu3(Ti1−xHfx)4O12 (CCTHO) were prepared by solid state reaction method. The influences of Hf+4 ions substitution on the structural, optical and dielectric properties of the prepared samples were investigated using X-ray diffraction, diffuse reflectance spectroscopy and impedance spectroscopy respectively. The solubility limit of Hf in CaCu3Ti4O12 (CCTO) is found to be ~2 %. The optical spectroscopy data reveals that with Hf doping the optical band gap increases. Further we observed that with Hf substitution in CCTO at Ti site improves the dielectric properties, i.e. the value of dielectric constant (ε′) increases and that of dielectric loss (tanδ) decreases with respect to parent un-doped CCTO sample. Two dielectric relaxations are observed in Hf doped sample, whereas only one relaxation is observed in CCTO. The characteristic dielectric relaxation frequency shifts towards higher values with Hf doping. Further from the fitting of ε′ versus frequency data it appears that the relaxation mechanism shifts from Debye to Cole–Cole type.


Dielectric Constant HfO2 Dielectric Relaxation Diffuse Reflectance Spectroscopy Boundary Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge Prof. Pradeep Mathur, Director, IIT Indore for his constant support and encouragement. Prof. Ravikiran Late would like to thank Dr. R. J. Barnabas, Principal, Ahmednagar College for his support. Authors also acknowledge BRNS (DAE) and CSIR India for the financial support in the form of project number 2013/37P/31/BRNS/1751 and 03(1274)/13/EMR-II respectively. Authors are thankful to Dr. A. K. Sinha, Mr. Anuj Upadhyay and Mr. Manvendra N. Singh for their help during synchrotron X-ray diffraction measurements. SIC-IIT Indore is acknowledged for XRD and SEM measurements.


  1. 1.
    A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Solid State Commun. 115, 217 (2000)CrossRefGoogle Scholar
  2. 2.
    T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321 (2002)CrossRefGoogle Scholar
  3. 3.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)CrossRefGoogle Scholar
  4. 4.
    C. Mu, H. Zhang, Y. Liu, Y. Song, P. Liu, J. Rare Earths 28, 43 (2010)CrossRefGoogle Scholar
  5. 5.
    R.K. Pandey, W.A. Stapleton, J. Tate, A.K. Bandyopadhyay, I. Sutanto, S. Sprissler, S. Lin, AIP Adv. 3, 062126 (2013)CrossRefGoogle Scholar
  6. 6.
    L.C. Kretly, A.F.L. Almeida, R.S. de Oliveira, J.M. Sasaki, A.S.B. Sombra, Microw. Opt. Technol. Lett. 39, 145 (2003)CrossRefGoogle Scholar
  7. 7.
    P.K. Patel, K.L. Yadav, Mater. Res. Express 1, 015037 (2014)CrossRefGoogle Scholar
  8. 8.
    Y. Wang, L. Ni, X.M. Chen, J. Mater. Sci. Mater. Electron. 22, 345 (2011)CrossRefGoogle Scholar
  9. 9.
    M. Li, A. Feteira, D.C. Sinclair, A.R. West, Appl. Phys. Lett. 88, 232903 (2006)CrossRefGoogle Scholar
  10. 10.
    T.B. Adams, D.C. Sinclair, A.R. West, Phys. Rev. B 73, 094124 (2006)CrossRefGoogle Scholar
  11. 11.
    M.H. Cohen, J.B. Neaton, L. He, D. Vanderbilt, J. Appl. Phys. 94, 3299 (2003)CrossRefGoogle Scholar
  12. 12.
    S.-Y. Chung, I.-D. Kim, S.-J.L. Kang, Nat. Mater. 3, 774 (2004)CrossRefGoogle Scholar
  13. 13.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)CrossRefGoogle Scholar
  14. 14.
    M. Li, D.C. Sinclair, A.R. West, J. Appl. Phys. 109, 084106 (2011)CrossRefGoogle Scholar
  15. 15.
    L. Singh, U.S. Rai, A.K. Rai, K.D. Mandal, Electron. Mater. Lett. 9, 107 (2013)CrossRefGoogle Scholar
  16. 16.
    L. Singh, U.S. Rai, K.D. Mandal, A.K. Rai, Appl. Phys. A 112, 891 (2013)CrossRefGoogle Scholar
  17. 17.
    T.B. Adams, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 89, 3129 (2006)CrossRefGoogle Scholar
  18. 18.
    L. Zhang, Y. Wu, X. Guo, Z. Wang, Y. Zou, J. Mater. Sci. Mater. Electron. 23, 865 (2012)CrossRefGoogle Scholar
  19. 19.
    G. Chiodelli, V. Massarotti, D. Capsoni, M. Bini, C.B. Azzoni, M.C. Mozzati, P. Lupotto, Solid State Commun. 132, 241 (2004)CrossRefGoogle Scholar
  20. 20.
    R. Schmidt, D.C. Sinclair, Chem. Mater. 22, 6 (2010)CrossRefGoogle Scholar
  21. 21.
    L. Singh, U.S. Rai, A.K. Rai, K.D. Mandal, J. Adv. Ceram. 2, 119 (2013)CrossRefGoogle Scholar
  22. 22.
    R.K. Grubbs, E.L. Venturini, P.G. Clem, J.J. Richardson, B.A. Tuttle, G.A. Samara, Phys. Rev. B 72, 104111 (2005)CrossRefGoogle Scholar
  23. 23.
    D. Capsoni, M. Bini, V. Massarotti, G. Chiodelli, M.C. Mozzatic, C.B. Azzoni, J. Solid State Chem. 177, 4494 (2004)CrossRefGoogle Scholar
  24. 24.
    F. Amaral, L.C. Costa, M.A. Valente, F. Henry, J. Non-Cryst. Solids 355, 2160 (2009)CrossRefGoogle Scholar
  25. 25.
    K.D. Mandal, A.K. Rai, L. Singh, O. Parkash, Bull. Mater. Sci. 35, 433 (2012)CrossRefGoogle Scholar
  26. 26.
    S. Anwar, P.R. Sagdeo, N.P. Lalla, J. Phys. Condens. Matter 18, 3455 (2006)CrossRefGoogle Scholar
  27. 27.
    C.H. Kim, Y.H. Jang, S.J. Seo, C.H. Song, J.Y. Son, Y.S. Yang, J.H. Cho, Phys. Rev. B 85, 245210 (2012)CrossRefGoogle Scholar
  28. 28.
    M.A. de la Rubia, P. Leret, A. del Campo, R.E. Alonso, A.R. López-Garcia, J.F. Fernández, J. de Frutos, J. Eur. Ceram. Soc. 32, 1691 (2012)CrossRefGoogle Scholar
  29. 29.
    K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)CrossRefGoogle Scholar
  30. 30.
    Q.G. Chi, L. Gao, X. Wang, J.Q. Lin, J. Sun, Q.Q. Lei, J. Alloys Compd. 559, 45 (2013)CrossRefGoogle Scholar
  31. 31.
    W. Hao, J. Zhang, J. Alloys Compd. 559, 16 (2013)CrossRefGoogle Scholar
  32. 32.
    H. Birey, J. Appl. Phys. 49, 2898 (1978)CrossRefGoogle Scholar
  33. 33.
    S.I.R. Costa, M. Li, J.R. Frade, D.C. Sinclair, RSC Adv. 3, 7030 (2013)CrossRefGoogle Scholar
  34. 34.
    Y.-M. Kim, A. Morozovska, E. Eliseev, M.P. Oxley, R. Mishra, S.M. Selbach, T. Grande, S.T. Pantelides, S.V. Kalinin, A.Y. Borisevich, Nat. Mater. 13, 1019 (2014)CrossRefGoogle Scholar
  35. 35.
    M.-P. Zheng, Y.-D. Hou, F.-Y. Xie, J. Chen, M.-K. Zhu, H. Yan, Acta Mater. 61, 1489 (2013)CrossRefGoogle Scholar
  36. 36.
    R. Waser, R. Hagenbeck, Acta Mater. 48, 797 (2000)CrossRefGoogle Scholar
  37. 37.
    F. Rehman, J.-B. Li, M.-S. Cao, Y.-J. Zhao, M. Rizwan, H.-B. Jin, Ceram. Int. 41, 14652 (2015)CrossRefGoogle Scholar
  38. 38.
    S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, A. Loidl, Appl. Phys. Lett. 91, 022910 (2007)CrossRefGoogle Scholar
  39. 39.
    K.S. Cole, J. Chem. Phys. 10, 98 (1942)CrossRefGoogle Scholar
  40. 40.
    K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341 (1941)CrossRefGoogle Scholar
  41. 41.
    Y.P. Kalmykov, W.T. Coffey, D.S.F. Crothers, S.V. Titov, Phys. Rev. E 70, 041103 (2004)CrossRefGoogle Scholar
  42. 42.
    G.G. Raju, Dielectrics in electric fields (CRC Press, Boca Raton, 2003)CrossRefGoogle Scholar
  43. 43.
    S.F. Shao, J.L. Zhang, P. Zheng, W.L. Zhong, C.L. Wang, J. Appl. Phys. 99, 084106 (2006)CrossRefGoogle Scholar
  44. 44.
    V. Sasca, A. Popa, J. Appl. Phys. 114, 133503 (2013)CrossRefGoogle Scholar
  45. 45.
    P.D. Fochs, Proc. Phys. Soc. Sect. B 69, 70 (1956)CrossRefGoogle Scholar
  46. 46.
    J.H. Clark, M.S. Dyer, R.G. Palgrave, C.P. Ireland, J.R. Darwent, J.B. Claridge, M.J. Rosseinsky, J. Am. Chem. Soc. 133, 1016 (2011)CrossRefGoogle Scholar
  47. 47.
    H.J. Im, M. Tsunekawa, T. Sakurada, M. Iwataki, K. Kawata, T. Watanabe, K. Takegahara, H. Miyazaki, M. Matsunami, T. Hajiri, S. Kimura, Phys. Rev. B 88, 205133 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ravikiran Late
    • 1
    • 2
  • Hari Mohan Rai
    • 1
  • Shailendra K. Saxena
    • 1
  • Rajesh Kumar
    • 1
  • Archna Sagdeo
    • 3
  • Pankaj R. Sagdeo
    • 1
    Email author
  1. 1.Material Research Laboratory, Discipline of Physics & Centre for Material Science and EngineeringIndian Institute of Technology IndoreIndoreIndia
  2. 2.Department of PhysicsAhmednagar CollegeAhmednagarIndia
  3. 3.Indus Synchrotron Utilization DivisionRaja Ramanna Center for Advance TechnologyIndoreIndia

Personalised recommendations