SiO2–Fe2O3–MoO3 ceramic system doped with Nb2O5, a study of the dielectric temperature dependence

  • C. C. Silva
  • A. S. B. Sombra
  • M. P. F. GraçaEmail author


In this paper the temperature dependence, structure and electrical properties of the ceramic system SiO2–MoO3–Fe2O3:Nb2O5 was studied. This material can be used for temperature sensor applications. The samples with the composition (100 − x)(SiO2–Fe2O3–MoO3) + x(Nb2O5), with x = 0; 0.3; 0.5 (mol%) were prepared through the solid state reaction method. The structure of the samples was analyzed by X-Ray Powder Diffraction together with the Rietveld refinement. Their morphology was studied by scanning electron microscopy with Energy-Dispersive Spectroscopy analysis. The dielectric properties were measured in the frequency range 1 Hz–1 MHz as a function of temperature. The Temperature Capacitance Coefficient was measured for all samples. The obtained results are discussed and correlated with the preparation method.


Fe2O3 MoO3 Nb2O5 Rietveld Refinement Ceramic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank this work to LOCEM (Physics Department, Federal University of Ceará, Brazil) for the use of theirs laboratories for samples preparation and CNPq (Brazilian Agency).


  1. 1.
    U. Lampe, J. Gerblinger, H. Meixner, Sens. Actuators B 26, 97–104 (1995)CrossRefGoogle Scholar
  2. 2.
    Y. Shimizu, M. Shimabukuro, H. Arai, T. Seiyama, Chem. Lett. 7, 917–920 (1985)CrossRefGoogle Scholar
  3. 3.
    T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, Anal. Chem. 34, 1502–1503 (1962)CrossRefGoogle Scholar
  4. 4.
    B.M. Kulwicki, J. Am. Ceram. Soc. 74, 697–708 (1991)CrossRefGoogle Scholar
  5. 5.
    E. Traversa, Sens. Actuators B 23, 135–156 (1995)CrossRefGoogle Scholar
  6. 6.
    A.B. Glot, A.M. Chakk, B.K. Chernyi, A.Y. Yakunin, Inorg. Mater. 10, 1866–1868 (1974)Google Scholar
  7. 7.
    A.Y. Yakunin, B.K. Chernyi, A.M. Chakk, A.B. Glot, Inorg. Mater. 12, 803–805 (1976)Google Scholar
  8. 8.
    A.B. Glot, Inorg. Mater. 20, 1522–1523 (1984)Google Scholar
  9. 9.
    A.B. Glot, A.P. Zlobin, Inorg. Mater. 25, 274–276 (1989)Google Scholar
  10. 10.
    P.N. Santosh, H.S. Potdar, S.K. Date, J. Mater. Res. 12, 326–328 (1997)CrossRefGoogle Scholar
  11. 11.
    S.A. Pianaro, P.R. Bueno, E. Longo, J.A. Varela, Ceram. Int. 25, 1–6 (1999)CrossRefGoogle Scholar
  12. 12.
    A.V. Gaponov, A.B. Glot, A.I. Ivon, A.M. Chack, G.J.C. Jimenez-Santana, Mater. Sci. Eng. B 145, 76–84 (2007)CrossRefGoogle Scholar
  13. 13.
    K. Cvejin, B. Mojic, N. Samardzic, V.V. Srdic, G.M. Stojanovic, J. Mater. Sci. Mater. Electron. 24, 1243–1249 (2013)CrossRefGoogle Scholar
  14. 14.
    L. Li, J. Chen, N. Zhang, Y. Liu, J. Yu, J. Mater. Sci. Mater. Electron. 26, 84–89 (2015)CrossRefGoogle Scholar
  15. 15.
    Y. Zhang, S. Gao, B. Zhang, J. Mater. Sci. Mater. Electron. 26, 2709–2712 (2015)CrossRefGoogle Scholar
  16. 16.
    P. Singh, O. Parkash, D. Kumar, J. Mater. Sci. Mater. Electron. 16, 145–148 (2005)CrossRefGoogle Scholar
  17. 17.
    G. Cocorullo, F.G. Della Corte, M. Lodice, I. Rendina, P.M. Sarro, Sens. Actuators A 61, 267–272 (1997)CrossRefGoogle Scholar
  18. 18.
    W. Yan, H. Li, J. Liu, J. Guo, Sens. Actuators A 136, 212–215 (2007)CrossRefGoogle Scholar
  19. 19.
    M.R.N. Soares, S. Leite, C. Nico, M. Peres, A.J.S. Fernandes, M.P.F. Graça, J. Eur. Ceram. Soc. 31(4), 501–506 (2011)CrossRefGoogle Scholar
  20. 20.
    M.P.F. Graca, M.G.F. da Silva, A.S.B. Sombra, M.A. Valente, J. Non-Cryst. Solids. 354(29), 3408–3413 (2008)CrossRefGoogle Scholar
  21. 21.
    M.P.F. Graca, M.G.F. da Silva, A.S.B. Sombra, M.A. Valente, J. Non-Cryst. Solids 352(42–49), 5199–5204 (2006)CrossRefGoogle Scholar
  22. 22.
    M.P.F. Graca, M.G.F. da Silva, M.A. Valente, J. Eur. Ceram. Soc. 28(6), 1197–1203 (2008)CrossRefGoogle Scholar
  23. 23.
    R. A. Yong, The Rietveld Method, International Union of Crystallography, 1st edn. (Oxford Science Publications, 1995), pp. 1–38Google Scholar
  24. 24.
    Joint Committee on Powder Diffraction International Centre for Diffraction Data-JCPDS FeNbO4 (71-1849); SiO2 (82-1404 [1] and 83-2467 [2]) and Fe2O3 (84-0310)]Google Scholar
  25. 25.
    C.C. Silva, M.P.F. Graça, M.A. Valente, A.S.B. Sombra, Phys. Scr. 79, 055601–055607 (2009)CrossRefGoogle Scholar
  26. 26.
    J.C. Adenilson, M.B. Olívia, D. Edgar, C.G. José, R.M. João, Diam. Relat. Mater. 16, 1652–1655 (2007)CrossRefGoogle Scholar
  27. 27.
    F.N.A. Freire, M.R.P. Santos, F.M.M. Pereira, R.S.T.M. Sohn, J.S. Almeida, A.M.L. Medeiros, E.O. Sancho, M.M. Costa, A.S.B. Sombra, J. Mater. Sci. Mater. Electron. 20, 149–156 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • C. C. Silva
    • 1
    • 2
  • A. S. B. Sombra
    • 2
  • M. P. F. Graça
    • 3
    Email author
  1. 1.UFMA, Social Science, Health and Technology, CCSST, Food Engineering Coordination and Materials ScienceFederal University of MaranhãoImperatrizBrazil
  2. 2.Telecommunications and Materials Science and Engineering Laboratory (LOCEM), Physics DepartmentFederal University of CearáFortalezaBrazil
  3. 3.I3N-Aveiro, Physics DepartmentAveiro UniversityAveiroPortugal

Personalised recommendations