Multiferroic and optical studies on the effects of Ba2+ ions in BiFeO3 nanoparticles



Single phase Ba2+ ions doped BiFeO3 nanoparticles have been successfully synthesized with varied concentration (0.0 ≤ x ≤ 0.2) using the auto combustion method. The structural properties of Bi1−xBaxFeO3 (x-0.0, 0.1 and 0.2) nanoparticles reveal the formation of highly crystalline rhombohedrally distorted perovskites without undergoing any structural phase transformation analyzed via Rietveld refinement. The Pauling’s equation confirmed that Ba2+ ions doped BiFeO3 ceramics have much more negative enthalpy of formation (ΔH f ) than undoped BiFeO3. A reduction of particle size has been observed up to x = 0.1 and then after increases, whereas the band gap shows a reverse trend. Magnetic and ferroelectric transition temperatures are found to be slightly shifted towards the lower temperature up to x = 0.1 and then higher temperature side which could be attributed to the particle size effect. Ba2+ doped BiFeO3 ceramic with concentration x = 0.2 exhibit larger magnetization as compared to others at room temperature, but these magnetization curves were not saturated. Remnant polarization is found to decrease from 7.693 to 5.141 µC/cm2 along with the doping of Ba2+ ions. The on-site d-to-d crystal field excitations of Fe3+ ions associated with 6A1g4T1g or 6A1g4T2g electronic energy levels, Fe13d–Fe23d inter-site electron transfer and inter-atomic O 2p–Fe 3d electronic energy levels are observed by the means of absorption spectroscopy.



Author would like to thank UGC for the financial support F. No. 42-840/2013 (SR).


  1. 1.
    G. Catalan, J.F. Scott, Adv. Mater. 2, 2463 (2009)CrossRefGoogle Scholar
  2. 2.
    Y.L. Han, W.F. Liu, P. Wu, X.L. Xu, M.C. Guo, G.H. Rao, S.Y. Wang, J. Alloys Compd. 666, 115 (2016)CrossRefGoogle Scholar
  3. 3.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)CrossRefGoogle Scholar
  4. 4.
    X. Wang, S.Y. Wang, W.F. Liu, X.J. Xi, H. Zhang, F. Guo, X.L. Xu, M. Li, L. Liu, C. Zhang, X. Li, J.B. Yang, J. Nanopart. Res. 17, 209 (2015)CrossRefGoogle Scholar
  5. 5.
    B. Kundys, A. Maignan, C. Martin, N. Nguyen, Appl. Phys. Lett. 92, 112905 (2008)CrossRefGoogle Scholar
  6. 6.
    M. Muneeswaran, N.V. Giridharan, J. Appl. Phys. 115, 214109 (2014)CrossRefGoogle Scholar
  7. 7.
    P. Singh, J.H. Jung, Phys. B. 405, 1086 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Muneeswaran, P. Jegatheesan, M. Gopiraman, I.-S. Kim, N.V. Giridharan, Appl. Phys. A. 114, 853 (2014)CrossRefGoogle Scholar
  9. 9.
    R.D. Shannon, Acta Crystallogr. A. 32, 751 (1976)CrossRefGoogle Scholar
  10. 10.
    M. Guo, W. Liu, X. Ling, P. Wu, H. Zhang, Y. Han, G. Rao, S. Wang, J. Nanopart Res. 17, 460 (2015)CrossRefGoogle Scholar
  11. 11.
    A. Chaudhuri, K. Mandal, J. Magn. Magn. Mater. 353, 57 (2014)CrossRefGoogle Scholar
  12. 12.
    J.D. Perkins, J.M. Graybeal, M.A. Kastner, R.J. Birgeneau, J.P. Falck, M. Greven, Phys. Rev. Lett. 71, 1621 (1993)CrossRefGoogle Scholar
  13. 13.
    R.S. Meltzer, M. Lowe, D.S. McClure, Phys. Rev. 180, 561 (1969)CrossRefGoogle Scholar
  14. 14.
    J. Yang, X. Li, J. Zhou, Y. Tang, Y. Zhang, Y. Li, J. Alloys Compd. 509, 9271 (2011)CrossRefGoogle Scholar
  15. 15.
    J. Rodriguez-Carvajal Laboratory, FULLPROF 2000, A Rietveld and Pattern Matching Analysis Program (Laboratoire Leon Brillouin-CEA-CNRS, France, 2008)Google Scholar
  16. 16.
    G. Dhir, P. Uniyal, N.K. Verma, Mater. Sci. Semicon. Process. 27, 611 (2014)CrossRefGoogle Scholar
  17. 17.
    V.A. Khomchenko, V.V. Shvartsman, P. Borisov, W. Kleemann, D.A. Kiselev, I.K. Bdikin, J.M. Vieira, A.L. Kholkin, J. Magn, Magn. Mater. 321, 1692 (2009)CrossRefGoogle Scholar
  18. 18.
    L. Pauling, The Nature of The Chemical Bond, 3rd edn. (Cornell University Press, Ithaca, 1960)Google Scholar
  19. 19.
    K.S. Nalwa, A. Garg, J. Appl. Phys. 103, 044101 (2008)CrossRefGoogle Scholar
  20. 20.
    P. Debye, Ann. Phys. 351, 809 (1915)CrossRefGoogle Scholar
  21. 21.
    R. Das, K. Mandal, IEEE T Magn. 47, 10 (2011)Google Scholar
  22. 22.
    V.A. Reddy, N.P. Pathak, R. Nath, J. Alloys Compd. 543, 206 (2012)CrossRefGoogle Scholar
  23. 23.
    T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano Lett. 7, 766 (2007)CrossRefGoogle Scholar
  24. 24.
    R. Mazumder, P. SujathaDevi, D. Bhattacharya, P. Choudhury, A. Sen, Appl. Phys. Lett. 91, 062510 (2007)CrossRefGoogle Scholar
  25. 25.
    B. Bhushan, Z. Wang, J. van Tol, N.S. Dalal, A. Basumallick, N.Y. Vasanthacharya, S. Kumar, D. Das, J. Am. Ceram. Soc. 95, 1985 (2012)CrossRefGoogle Scholar
  26. 26.
    P. Suresh, S. Srinath, J. Appl. Phys. 113, 17D920 (2013)CrossRefGoogle Scholar
  27. 27.
    A. Mukherjee, Hossain Sk M, M. Pal, S. Basu, Appl. Nano Sci. 2, 305 (2012)CrossRefGoogle Scholar
  28. 28.
    P.S.V. Mocherla, C. Karthik, R. Ubic, M.S. Ramachandra Rao, C. Sudakar, Appl. Phys. Lett. 103, 022910 (2013)CrossRefGoogle Scholar
  29. 29.
    M.O. Ramirez, A. Kumar, S.A. Denev, N.J. Podraza, X.S. Xu, R.C. Rai, Y.H. Chu, J. Seidel, L.W. Martin, S.-Y. Yang, E. Saiz, J.F. Ihlefeld, S. Lee, J. Klug, S.W. Cheong, M.J. Bedzyk, O. Auciello, D.G. Schlom, R. Ramesh, J. Orenstein, J.L. Musfeldt, V. Gopalan, Phys. Rev. B. 79, 224106 (2009)CrossRefGoogle Scholar
  30. 30.
    P.C. Sati, M. Kumar, S. Chhoker, M. Jewariya, Ceram. Int. 41, 2389 (2015)CrossRefGoogle Scholar
  31. 31.
    T. Durga Rao, T. Karthik, S. Asthana, J. Rare Earths 31, 370 (2013)CrossRefGoogle Scholar
  32. 32.
    Y. Liu, R. Zuo, J. Mater. Sci. Mater. Electron. 23, 2276 (2012)CrossRefGoogle Scholar
  33. 33.
    R.V. Pisarev, A.S. Moskvin, A.M. Kalashinkova, T. Rasing, Phys. Rev. B. 79, 235128 (2009)CrossRefGoogle Scholar
  34. 34.
    Y.H. Wang, X. Qi, Proc. Eng. 36, 455 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Physics and Materials ScienceThapar UniversityPatialaIndia
  2. 2.Smart Material Research Laboratory, Department of PhysicsIndian Institute of TechnologyRoorkeeIndia

Personalised recommendations