Nonvolatile bio-memristor fabricated with natural bio-materials from spider silk

  • Bai Sun
  • Dandan Liang
  • Xiaoping Li
  • Peng Chen


The employ of nontoxic biomaterials as the basic building blocks of electronic devices is of growing interest for biocompatible and environmentally friendly electronics. Herein the fabrication and characterization of natural biomaterials-based bio-memristors with Ag/Fibroin/Au/Si structure is demonstrated. We observed a significant bipolar resistive switching behavior in Ag/Fibroin/Au/Si structure at room temperature. The results suggested that the memory behavior originates from the formation and rupture of conductive filaments. This work reveals that fibroin from spider silk is a useful natural biomaterial for nonvolatile memory applications, suggesting that spider silk possesses the potential for sustainable electronics and data storage.


Resistive Switching High Resistance State Spider Silk Memory Window Resistive Switching Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Nature Science Foundation of China (Grant No. 51372209).


  1. 1.
    S. Hwang, X. Huang, J. Seo, J. Song, S. Kim, S. Ali, H. Chung, H. Tao, F. Omenetto, Z. Ma, J. Rogers, Adv. Mater. 25, 3526 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Vladu, E. Glowackib, G. Vossb, S. Bauera, N. Sariciftci, Mater. Today 15, 340 (2012)CrossRefGoogle Scholar
  3. 3.
    M. Vladu, N. Sariciftci, S. Bauer, J. Mater. Chem. 21, 1350 (2011)CrossRefGoogle Scholar
  4. 4.
    J. Chang, C. Wang, C. Huang, T. Tsai, T. Guo, T. Wen, Adv. Mater. 23, 4077 (2011)CrossRefGoogle Scholar
  5. 5.
    N. Amdursky, I. Pecht, M. Sheves, D. Cahen, J. Am. Chem. Soc. 134, 18221 (2012)CrossRefGoogle Scholar
  6. 6.
    I. Ron, L. Sepunaru, S. Itzhakov, T. Belenkova, N. Friedman, I. Pecht, M. Sheves, D. Cahen, J. Am. Chem. Soc. 132, 4131 (2010)CrossRefGoogle Scholar
  7. 7.
    P. Zalar, D. Kamkar, R. Naik, F. Ouchen, J. Grote, G. Bazan, T. Nguyen, J. Am. Chem. Soc. 133, 11010 (2011)CrossRefGoogle Scholar
  8. 8.
    Y. Zhang, P. Zalar, C. Kim, S. Collins, G. Bazan, T. Nguyen, Adv. Mater. 24, 4255 (2012)CrossRefGoogle Scholar
  9. 9.
    Y. Chen, M. Hong, G. Huang, Nat. Nanotechnol. 7, 197 (2012)CrossRefGoogle Scholar
  10. 10.
    H. Tao, D. Kaplan, F. Omenetto, Adv. Mater. 24, 2824 (2012)CrossRefGoogle Scholar
  11. 11.
    E. Mentovich, B. Belgorodsky, I. Kalifa, H. Cohen, S. Richter, Nano Lett. 9, 1296 (2009)CrossRefGoogle Scholar
  12. 12.
    D. Lin, H. Tao, J. Trevino, J. Mondia, D. Kaplan, F. Omenetto, L. Negro, Adv. Mater. 24, 6088 (2012)CrossRefGoogle Scholar
  13. 13.
    D. Kim, J. Viventi, J. Amsden, J. Xiao, L. Vigeland, Y. Kim, J. Blanco, B. Panilaitis, E. Frechette, D. Contreras, D. Kaplan, F. Omenetto, Y. Huang, K. Hwang, M. Zakin, B. Litt, J. Rogers, Nat. Mater. 9, 511 (2010)CrossRefGoogle Scholar
  14. 14.
    F. Meng, L. Jiang, K. Zheng, C. Goh, S. Lim, H. Hng, J. Ma, F. Boey, X. Chen, Small 7, 3016 (2011)CrossRefGoogle Scholar
  15. 15.
    H. Wang, F. Meng, B. Zhu, W. Leow, Y. Liu, X. Chen, Adv. Mater. 27, 7670 (2015)CrossRefGoogle Scholar
  16. 16.
    J. Yang, D. Strukov, D. Stewart, Nat. Nanotechnol. 8, 13 (2013)CrossRefGoogle Scholar
  17. 17.
    M. Khan, U. Bhansali, M. Almadhoun, I. Odeh, D. Cha, H. Alshareef, Adv. Funct. Mater. 24, 1372 (2014)CrossRefGoogle Scholar
  18. 18.
    J. Park, S. Lee, J. Lee, K. Yong, Adv. Mater. 25, 6423 (2013)CrossRefGoogle Scholar
  19. 19.
    S. Ambrogio, S. Balatti, S. Choi, D. Ielmini, Adv. Mater. 26, 3885 (2014)CrossRefGoogle Scholar
  20. 20.
    A. Breemen, T. Zaba, V. Khikhlovskyi, J. Michels, R. Janssen, M. Kemerink, G. Gelinck, Adv. Funct. Mater. 25, 278 (2015)CrossRefGoogle Scholar
  21. 21.
    B. Sun, C.M. Li, Phys. Chem. Chem. Phys. 17, 6718 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Hung, W. Hsu, T. Lin, L. Fruk, Appl. Phys. Lett. 99, 253301 (2011)CrossRefGoogle Scholar
  23. 23.
    Y. Ko, Y. Kim, H. Baek, J. Cho, ACS Nano 5, 9918 (2011)CrossRefGoogle Scholar
  24. 24.
    B. Sun, L. Wei, H. Li, X. Jia, J. Wu, P. Chen, J. Mater. Chem. C 3, 12149 (2015)CrossRefGoogle Scholar
  25. 25.
    M.K. Hota, M.K. Bera, B. Kundu, S. Kundu, C. Maiti, Adv. Funct. Mater. 22, 4493 (2012)CrossRefGoogle Scholar
  26. 26.
    F. Meng, B. Sana, Y. Li, Y. Liu, S. Lim, X. Chen, Small 10, 277 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Uenuma, T. Ban, N. Okamoto, B. Zheng, Y. Kakihara, M. Horita, Y. Ishikawa, I. Yamashita, Y. Uraoka, RSC Adv. 3, 18044 (2013)CrossRefGoogle Scholar
  28. 28.
    C. Mukherjee, M. Hota, D. Naskar, S. Kundu, C. Maiti, Phys. Status Solidi A 210, 1797 (2013)Google Scholar
  29. 29.
    N. Gogurla, S. Mondal, A. Sinha, A. Katiyar, W. Banerjee, S. Kundu, S. Ray, Nanotechnology 24, 345202 (2013)CrossRefGoogle Scholar
  30. 30.
    N. Hosseini, J. Lee, ACS Nano 9, 419 (2015)CrossRefGoogle Scholar
  31. 31.
    H. Wang, F. Meng, Y. Cai, L. Zheng, Y. Li, Y. Liu, Y. Jiang, X. Wang, X. Chen, Adv. Mater. 25, 5498 (2013)CrossRefGoogle Scholar
  32. 32.
    Y.C. Chen, H.C. Yu, C.Y. Huang, W.L. Chung, S.L. Wu, Y.K. Su, Sci. Rep. 5, 10022 (2015)CrossRefGoogle Scholar
  33. 33.
    D.N. Rockwood, R.C. Preda, T. Yücel, X. Wang, M.L. Lovett, D.L. Kaplan, Nat. Protoc. 6, 1612 (2011)CrossRefGoogle Scholar
  34. 34.
    H. Wang, Y. Du, Y. Li, B. Zhu, W.R. Leow, Y. Li, J. Pan, T. Wu, X. Chen, Adv. Funct. Mater. 25, 3825 (2015)CrossRefGoogle Scholar
  35. 35.
    X. Cao, X.M. Li, X.D. Gao, Y.W. Zhang, X.J. Liu, Q. Wang, L.D. Chen, Appl. Phys. A 97, 883 (2009)CrossRefGoogle Scholar
  36. 36.
    J.S. Rajachidambaram, S. Murali, J.F. Conley, S.L. Golledge, G.S. Herman, J. Vac. Sci. Technol. B 31, 01A104 (2013)CrossRefGoogle Scholar
  37. 37.
    C.H. Kim, Y.H. Jang, H.J. Hwang, Z.H. Sun, H.B. Moon, J.H. Cho, Appl. Phys. Lett. 94, 102107 (2009)CrossRefGoogle Scholar
  38. 38.
    D. Kim, J.H. Shin, H.S. Shin, J.Y. Song, J. Appl. Phys. 114, 043514 (2013)CrossRefGoogle Scholar
  39. 39.
    B. Sun, X. Li, D. Liang, P. Chen, Chem. Phys. Lett. 643, 66 (2016)CrossRefGoogle Scholar
  40. 40.
    B. Sun, W. Zhao, H. Li, L. Wei, P. Chen, Chem. Phys. Lett. 613, 100 (2014)CrossRefGoogle Scholar
  41. 41.
    Y. Sun, L. Li, D. Wen, X. Bai, J. Phys. Chem. C 119, 19520 (2015)CrossRefGoogle Scholar
  42. 42.
    B. Sun, Y. Liu, F. Lou, P. Chen, Chem. Phys. 457, 28 (2015)CrossRefGoogle Scholar
  43. 43.
    L. Wang, C.H. Yang, J. Wen, S. Gai, Y.X. Peng, J. Mater. Sci. Mater. Electron. 26, 4618 (2015)CrossRefGoogle Scholar
  44. 44.
    Y. Hirose, H. Hirose, J. Appl. Phys. 47, 2767 (1976)CrossRefGoogle Scholar
  45. 45.
    R. Waser, R. Dittmannn, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009)CrossRefGoogle Scholar
  46. 46.
    B. Sun, H. Li, L. Wei, P. Chen, CrystEngComm 16, 9891 (2014)CrossRefGoogle Scholar
  47. 47.
    D. Liu, H. Cheng, X. Zhu, G. Wang, N. Wang, A.C.S. Appl, Mater. Interfaces 5, 11258 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Physics Science and TechnologySouthwest UniversityChongqingChina

Personalised recommendations