Advertisement

Energy storage properties and electrical behavior of lead-free (1 − x) Ba0.04Bi0.48Na0.48TiO3xSrZrO3 ceramics

  • Xingxing Zhou
  • Changlai YuanEmail author
  • Qingning Li
  • Qin Feng
  • Changrong Zhou
  • Xiao Liu
  • Yun Yang
  • Guohua Chen
Article

Abstract

(1 − x) Ba0.04Bi0.48Na0.48TiO3xSrZrO3 (x = 0.08, 0.12, 0.15, 0.18 and 0.2, abbreviation as ‘BBNT-xSZ’) lead-free ceramics were synthesized by conventional solid-state reaction processes. Microstructures and electrical properties of BBNT-xSZ ceramics were investigated. XRD analysis reveals a pure perovskite phase without obvious phase transition with the addition of SZ. All BBNT-xSZ ceramics show high density and the grain sizes increase slightly with an increase of SZ concentration. Meanwhile, the energy storage density increases drastically, and a maximum value of 1.32 J/cm3 at E = 155 kV/cm is achieved in BBNT-0.15SZ through increasing greatly its breakdown strength with more SZ content. The temperature dependence of dielectric constant and dielectric loss of BBNT-xSZ ceramics illustrated the obvious relaxor phase transition characteristics. The BBNT-0.15SZ ceramic exhibits a high ionic conductivity accompanied by a low electronic conductivity. These properties support that (1 − x)Ba0.04Bi0.48Na0.48TiO3xSrZrO3 ceramics might be a promising lead-free material for high energy-storage capacitor application.

Keywords

BaTiO3 Breakdown Strength Dielectric Anomaly Energy Storage Density Energy Storage Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Financial supports of the National Natural Science Foundation of China (Grants No. 11464006) and the Natural Science Foundation of Guangxi (Grants No. 2014GXNSFBA118254) are gratefully acknowledged by the authors.

References

  1. 1.
    X.F. Chen, X.L. Dong, G.S. Wang, F. Cao, Y.L. Wang, Doped Pb(Zr, Sn, Ti)O3 slim-loop ferroelectric ceramics for high-power pulse capacitors application. Ferroelectrics 363, 56–63 (2008)CrossRefGoogle Scholar
  2. 2.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)CrossRefGoogle Scholar
  3. 3.
    J. Rodel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezo-ceramics. J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)CrossRefGoogle Scholar
  4. 4.
    T. Takenaka, K. Maruyama, K. Sakata, (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236–2239 (1991)CrossRefGoogle Scholar
  5. 5.
    A. Sasaki, T. Chiba, Y. Mamuya, E. Otsuki, Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems. Jpn. J. Appl. Phys. 38, 5564–5567 (1999)CrossRefGoogle Scholar
  6. 6.
    T. Takenaka, K.I. Maruyama, K. Sakata, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236–2239 (1991)CrossRefGoogle Scholar
  7. 7.
    S.-T. Zhang, A.B. Kounga, E. Aulbach, Y. Deng, Temperature-dependent electrical properties of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics. J. Am. Ceram. Soc. 91, 3950–3954 (2008)CrossRefGoogle Scholar
  8. 8.
    Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, T.G. Park, Roles of lattice distortion in (1 − x)(Bi0.5Na0.5)TiO3–xBaTiO3 ceramics. Appl. Phys. Lett. 96, 202901 (2010)CrossRefGoogle Scholar
  9. 9.
    S.T. Zhang, A.B. Kounga, E. Aulbach, Y. Deng, Temperature-dependent electrical properties of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics. J. Am. Ceram. Soc. 91, 3950–3954 (2008)CrossRefGoogle Scholar
  10. 10.
    A.B. Kounga, S.-T. Zhang, W. Jo, T. Granzow, J. Rodel, Morphotropic phase boundaryin (1-x)Bi0.5Na0.5TiO3–xK0.5Na0.5NbO3 lead-free piezoceramics. Appl. Phys. Lett. 92, 222902–222903 (2008)CrossRefGoogle Scholar
  11. 11.
    L.H. Luo, B.Y. Wang, X.J. Jiang, W.P. Li, Energy storage properties of (1 − x)(Bi0.5Na0.5)TiO3xKNbO3 lead-free ceramics. J. Mater. Sci. 49, 1659–1665 (2014)CrossRefGoogle Scholar
  12. 12.
    Y.P. Huang, L.H. Luo, J. Wang, Q.H. Zuo, Y.J. Yao, W.P. Li, The down-conversion and up-conversion photoluminescence properties of Na0.5Bi0.5TiO3:Yb3+/Pr3+ ceramics. J. Appl. Phys. 118, 044101 (2015)CrossRefGoogle Scholar
  13. 13.
    C.L. Yuan, L.F. Meng, Y. Liu, C.R. Zhou, G.H. Chen, Q. Feng, G. Cheng, G.H. Rao, Microstructures and energy storage properties of Mn-doped 0.97Bi0.47Na0.47Ba0.06TiO3–0.03K0.5Na0.5NbO3 lead-free antiferroelectric ceramics. J. Mater. Sci.: Mater. Electron. 15, 3559 (2015)Google Scholar
  14. 14.
    Q. Feng, C.L. Yuan, X.Y. Liu, S.H. Wu, G.H. Chen, Q.N. Li, C.R. Zhou, J.W. Xu, F. Liu, Microstructures and energy-storage properties of (1 − x)(Na0.5Bi0.5)TiO3–xBaTiO3 with BaO–B2O3–SiO2 additions. J. Mater. Sci.: Mater. Electron. 26, 5113–5119 (2015)Google Scholar
  15. 15.
    A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems. Jpn. J. Appl. Phys. 38, 5564 (1999)CrossRefGoogle Scholar
  16. 16.
    K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Electrical properties and depolarization temperature of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 45, 4493–4496 (2006)CrossRefGoogle Scholar
  17. 17.
    W.-C. Lee, C.-Y. Huang, L.-K. Tsao, Y.-C. Wu, Crystal structure, dielectric and ferroelectric properties of (Bi0.5Na0.5)TiO3–(Ba, Sr)TiO3 lead-free piezoelectric ceramics. J. Alloys Compd. 492, 307–312 (2010)CrossRefGoogle Scholar
  18. 18.
    W. Krauss, D. Schütz, F.A. Mautner, A. Feteira, K. Reichmann, Piezo- electric properties and phase transition temperatures of the solid solution of (1 − x)(Bi0.5Na0.5)TiO3–xSrTiO3. J. Eur. Ceram. Soc. 30, 1827–1832 (2010)CrossRefGoogle Scholar
  19. 19.
    B. Parija, S.K. Rout, L.S. Cavalcante, A.Z. Simões, S. Panigrahi, E. Longo, N.C. Batista, Structure, microstructure and dielectric properties of 100 − x(Na0.5Bi0.5)TiO3–x[SrTiO3] composites ceramics. Appl. Phys. A 109, 715–723 (2012)CrossRefGoogle Scholar
  20. 20.
    M. Cernea, E. Andronescu, R. Radu, F. Fochi, C. Galassi, Sol–gel synthesis and characterization of BaTiO3-doped (Bi0.5Na0.5)TiO3 piezoelectric ceramics. J. Alloy. Compd. 490, 690–694 (2010)CrossRefGoogle Scholar
  21. 21.
    X. Tan, E. Aulbach, W. Jo, T. Granzow, J. Kling, M. Marsilius, H.J. Kleebe, J. Rodel, Effect of uniaxial stress on ferroelectric behavior of (Bi1/2Na1/2)TiO3-based lead-free piezoelectric ceramics. J. Appl. Phys. 106, 044107 (2009)CrossRefGoogle Scholar
  22. 22.
    A. Ahtee, M. Ahtee, A. Glazer, A. Hewat, The structure of orthorhombic SrZrO3 by neutron powder diffraction. Acta Crystallogr. B 32, 3243–3246 (1976)CrossRefGoogle Scholar
  23. 23.
    M. Chandrasekhar, P. Kumar, Synthesis and characterizations of BNT-BT and BNT-BT-KNN ceramics for actuator and energy storage applications. Ceram. Int. 41, 5574–5580 (2015)CrossRefGoogle Scholar
  24. 24.
    T.M. Correia, M. McMillen, M.K. Rokosz, M.G. John, V. Giuseppe, G.C. Markys, A lead-free and high-energy density ceramic for energy storage applications. J. Am. Ceram. Soc. 96, 2699–2702 (2013)CrossRefGoogle Scholar
  25. 25.
    W. Jo, E. Erdem, R.A. Eichel, J. Glaum, T. Granzow, D. Damjanovic, J. Rodel, Effect of Nb-donor and Fe-acceptor dopants in (Bi1/2Na1/2)TiO3–BaTiO3– (K0.5Na0.5)NbO3 lead-free piezoceramics. J. Appl. Phys. 108, 014110 (2010)CrossRefGoogle Scholar
  26. 26.
    F. Ni, L.H. Luo, W.P. Li, H.B. Chen, A-site vacancy-induced giant strain and the electrical properties in non-stoichiometric ceramics Bi0.5+x (Na1−y Ky)0.5−3x TiO3. J. Phys. D Appl. Phys. 45, 415103 (2012)CrossRefGoogle Scholar
  27. 27.
    C.G. Xu, D.M. Lin, K.W. Kwok, Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoelectric ceramics. Solid State Sci. 10, 934–940 (2008)CrossRefGoogle Scholar
  28. 28.
    K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 45, 4493–4496 (2006)CrossRefGoogle Scholar
  29. 29.
    X.J. Chou, J.W. Zhai, X. Yao, Relaxor behavior and dielectric properties of La2O3-doped barium zirconium titanate ceramics for tunable device applications. Mater. Chem. Phys. 109, 125–130 (2008)CrossRefGoogle Scholar
  30. 30.
    L. Khemakhem, A. Kabadou, A. Maalej, A. BenSalah, New relaxor ceramic with composition BaTi1-x(Zn1/3Nb2/3)xO3. J. Alloys Compd. 452, 451–455 (2008)CrossRefGoogle Scholar
  31. 31.
    D. Viehland, M. Wuttig, L.E. Cross, Relaxor ferroelectrics. Ferroelectrics 76, 241–267 (1987)CrossRefGoogle Scholar
  32. 32.
    W. Supattra, X.L. Tan, A. Supon, Y. Rattikorn, Dielectricand ferroelectric properties of fine grains Pb(In1/2Nb1/2)O3ePbTiO3 ceramics. J. Alloys Compd. 454, 331–339 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xingxing Zhou
    • 1
  • Changlai Yuan
    • 1
    • 2
    Email author
  • Qingning Li
    • 1
  • Qin Feng
    • 1
  • Changrong Zhou
    • 1
    • 2
  • Xiao Liu
    • 1
  • Yun Yang
    • 1
  • Guohua Chen
    • 1
    • 2
  1. 1.College of Material Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China
  2. 2.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations