Advertisement

Temperature dependence of Raman spectra of graphene on copper foil substrate

  • Weihui Wang
  • Qing Peng
  • Yiquan Dai
  • Zhengfang Qian
  • Sheng Liu
Article

Abstract

We investigate the temperature dependence of the phonon frequencies of the G and 2D modes in the Raman spectra of monolayer graphene grown on copper foil by chemical vapor deposition. The Raman spectroscopy is carried out under a 532.16 nm laser excitation over the temperature range from 150 to 390 K. Both the G and 2D modes exhibit significant red shift as temperature increases, and the extracted values of temperature coefficients of G and 2D modes are −0.101 and −0.180 cm−1 K−1, respectively, different from that of graphene on SiO2 substrate. The obtained results shed light on the anharmonic property of graphene, the complex interfacial interactions between graphene and the underlying copper foil substrate as temperature changes, and also proposes a new routine to estimate the thermal expansion coefficient of graphene on copper substrate rather than on SiO2 and SiN substrates. Furthermore, our work is instructive to study the similar temperature dependent mechanical properties, and the interfacial interactions between the other emerging two dimensional materials and their underlying substrates by temperature dependent Raman scatterings.

Keywords

Raman Spectrum Thermal Expansion Coefficient Copper Foil Monolayer Graphene Raman Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is supported by Basic Research (973) from Ministry of Science and Technology with Contract Number of 2011CB309504. Authors are also grateful to the Analytical and Testing Center, Huazhong University of Science and Technology for technical assistances.

References

  1. 1.
    C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)CrossRefGoogle Scholar
  2. 2.
    J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. van der Zande, J.M. Parpia, H.G. Craighead, P.L. McEuen, Nano Lett. 8, 2458 (2008)CrossRefGoogle Scholar
  3. 3.
    S. Zhou, A. Bongiorno, Sci. Rep. 3, 2484 (2013)Google Scholar
  4. 4.
    E.R. Margine, M.L. Bocquet, X. Blase, Nano Lett. 8, 3315 (2008)CrossRefGoogle Scholar
  5. 5.
    X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 41, 666 (2012)CrossRefGoogle Scholar
  6. 6.
    T. Jayasekera, J.W. Mintmire, Nanotechnology 18, 424033 (2007)CrossRefGoogle Scholar
  7. 7.
    J.X. Zhu, D. Yang, Z. Yin, Q. Yan, H. Zhang, Small 10, 3480 (2014)CrossRefGoogle Scholar
  8. 8.
    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R.S. Ruoff, Science 324, 1312 (2009)CrossRefGoogle Scholar
  9. 9.
    J.W. Suk, A. Kitt, C.W. Magnuson, Y. Hao, S. Ahmed, J. An, R.S. Ruoff, ACS Nano 5, 6916 (2011)CrossRefGoogle Scholar
  10. 10.
    X. Yu, J. Tao, Y. Shen, G. Liang, T. Liu, Y. Zhang, Q.J. Wang, Nanoscale 6, 9925 (2014)CrossRefGoogle Scholar
  11. 11.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)CrossRefGoogle Scholar
  12. 12.
    M. Huang, H. Yan, C. Chen, D. Song, T.F. Heinz, J. Hone, Proc. Natl. Acad. Sci. 106, 7304 (2009)CrossRefGoogle Scholar
  13. 13.
    L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Phys. Rep. 473, 51 (2009)CrossRefGoogle Scholar
  14. 14.
    A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S. Novoselov, C. Casiraghi, Nano Lett. 12, 3925 (2012)CrossRefGoogle Scholar
  15. 15.
    T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, A.C. Ferrari, Phys. Rev. B 79, 205433 (2009)CrossRefGoogle Scholar
  16. 16.
    J.U. Lee, D. Yoon, H. Kim, S.W. Lee, H. Cheong, Phys. Rev. B 83, 081419 (2011)CrossRefGoogle Scholar
  17. 17.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)CrossRefGoogle Scholar
  18. 18.
    J.E. Lee, G. Ahn, J. Shim, Y.S. Lee, S. Ryu, Nat. Commun. 3, 1024 (2012)CrossRefGoogle Scholar
  19. 19.
    A. Zandiatashbar, G.H. Lee, S.J. An, S. Lee, N. Mathew, M. Terrones, N. Koratkar, Nat. Commun. 5, 3186 (2014)CrossRefGoogle Scholar
  20. 20.
    I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Nano Lett. 7, 2645 (2007)CrossRefGoogle Scholar
  21. 21.
    D. Yoon, Y.W. Son, H. Cheong, Nano Lett. 11, 3227 (2011)CrossRefGoogle Scholar
  22. 22.
    S. Linas, Y. Magnin, B. Poinsot, O. Boisron, G.D. Förster, V. Martinez, F. Calvo, Phys. Rev. B 91, 075426 (2015)CrossRefGoogle Scholar
  23. 23.
    R. He, L. Zhao, N. Petrone, K.S. Kim, M. Roth, J. Hone, A. Pinczuk, Nano Lett. 12, 2408 (2012)CrossRefGoogle Scholar
  24. 24.
    N. Bonini, M. Lazzeri, N. Marzari, F. Mauri, Phys. Rev. Lett. 99, 176802 (2007)CrossRefGoogle Scholar
  25. 25.
    D. Yoon, Y.W. Son, H. Cheong, Phys. Rev. Lett. 106, 155502 (2011)CrossRefGoogle Scholar
  26. 26.
    R.J. Yong, L. Gong, I.A. Kinloch, I. Riaz, R. Jalil, K.S. Novoselov, ACS Nano 5, 3079 (2011)CrossRefGoogle Scholar
  27. 27.
    L. Gong, I.A. Kinloch, R.J. Yong, I. Riaz, R. Jalil, K.S. Novoselov, Adv. Mater. 22, 2694 (2010)CrossRefGoogle Scholar
  28. 28.
    S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, R.S. Ruoff, J. Phys. Chem. B 110, 8535 (2006)Google Scholar
  29. 29.
    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, B.H. Hong, Nature 457, 706 (2009)CrossRefGoogle Scholar
  30. 30.
    R. Sahin, E. Simsek, S. Akturk, Appl. Phys. Lett. 104, 053118 (2014)CrossRefGoogle Scholar
  31. 31.
    V. Carozo, C.M. Almeida, E.H. Ferreira, L.G. Cancado, C.A. Achete, A. Jorio, Nano Lett. 11, 4527 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Weihui Wang
    • 1
  • Qing Peng
    • 2
    • 3
  • Yiquan Dai
    • 1
  • Zhengfang Qian
    • 3
  • Sheng Liu
    • 3
  1. 1.School of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Mechanical, Aerospace and Nuclear EngineeringRensselaer Polytechnic InstituteTroyUSA
  3. 3.School of Power and Mechanical EngineeringWuhan UniversityWuhanChina

Personalised recommendations