Size tunable synthesis of HDA and TOPO capped ZnSe nanoparticles via a facile aqueous/thermolysis hybrid solution route

  • Oluwatobi. S. OluwafemiEmail author
  • Sneha Mohan
  • Oseyemi Olubomehin
  • Otolorin .A. Osibote
  • Sandile P. Songca


We herein report the synthesis of hexadecylamine (HDA) and trioctylphosphine (TOPO) capped ZnSe nanoparticles (NPs) via a simple and environmentally benign aqueous/thermolysis hybrid solution route. The synthesis involves the use of cheap and less toxic precursors as starting materials. By varying the reaction temperature, monomer concentration, capping group and zinc precursor we systematically studied the size, optical and structural properties of the as-synthesised NPs. The NPs were characterised using UV–Vis absorption and photoluminescence spectroscopy, transmission electron microscopy, high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). All the particles exhibited strong quantum confinement with respect to the bulk ZnSe. The absorption and emission maxima of the TOPO-capped ZnSe NPs are blue-shifted, as compared to the HDA-capped NPs synthesized at the same temperature and monomer concentration. The use of Zn(CH3COO)2 as the precursor resulted in a smaller NPs with no evidence of trap emission. The HRTEM confirm the crystallinity of the material while the XRD results indicated that the capping group has no pronounced effect on the phase and crystalline structure of the as-synthesised ZnSe NPs.


High Resolution Transmission Electron Microscopy ZnSe High Resolution Transmission Electron Microscopy Monomer Concentration Effective Mass Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Research Foundation (NRF), South Africa. South Africa under the Nanotechnology Flagship Programme (Grant No. 97983).The authors thank Dr. Manfred Scriba (Council for Scientific and Industrial Research (CSIR) South Africa) for the microscopic measurement.


  1. 1.
    A. Ennaoui, S. Siebntrit, M.C. Lux-Steiner, W. Riedl, F. Karg, Sol. Energy Mater. Sol. C 67, 31 (2001)CrossRefGoogle Scholar
  2. 2.
    K.R. Murali, K. Thilakvathy, S. Vasantha, R. Ooomen, Chalcogenide Lett. 5, 111 (2008)Google Scholar
  3. 3.
    N. Kouklin, L. Menon, A.Z. Wong, D.W. Thompson, J.A. Woollam, P.F. Williams, Appl. Phys. Lett. 79, 4423 (2001)CrossRefGoogle Scholar
  4. 4.
    W. Xiang, M. Xuliang, L. Wenliang, Z. Yufeng, Adv. Sci. Lett. 4, 1509 (2011)CrossRefGoogle Scholar
  5. 5.
    K. Yadav, Y. Dwivedi, N. Jaggi, J. Mater. Sci. Mater. Electron. 26, 2198 (2015)CrossRefGoogle Scholar
  6. 6.
    B.T. Ahn, L.L. Larina, K. Kim, S.J. Ahn, Pure Appl. Chem. 80, 2091 (2008)CrossRefGoogle Scholar
  7. 7.
    I.T. Zedan, A.A. Azab, E.M. El-Menyawy, Spectrochim. Acta Part A 154, 171 (2016)CrossRefGoogle Scholar
  8. 8.
    J.J. Andrade, A.G. Brasil, P.M. Farias, A. Fontes, B.S. Santos, Microelectron. J. 40, 641 (2009)CrossRefGoogle Scholar
  9. 9.
    V.J. Leppert, S.H. Risbud, M.J. Fendorf, Philos. Mag. Lett. 75, 29 (1997)CrossRefGoogle Scholar
  10. 10.
    B. Feng, J. Cao, D. Han, S. Yang, J. Yang, J. Mater. Sci. Mater. Electron. 26, 3206 (2015)CrossRefGoogle Scholar
  11. 11.
    P. Reiss, G. Quemard, S. Carayon, J. Bluese, F. Chandezon, A. Pron, Mater. Chem. Phys. 84, 10 (2004)CrossRefGoogle Scholar
  12. 12.
    Q. Liang, Y. Bai, L. Han, X. Deng, X. Wu, Z. Wang, X. Liu, J. Meng, J Lumin 143, 185 (2013)CrossRefGoogle Scholar
  13. 13.
    M.S. Selim, R. Seoudi, A.A. Shabaka, Mater. Lett. 59, 2650 (2005)CrossRefGoogle Scholar
  14. 14.
    N. Revaprasadu, M.A. Malik, P. O’Brien, M.M. Zulu, G. Wakefield, J. Mater. Chem. 8, 1885 (1988)Google Scholar
  15. 15.
    M. Afzaal, D. Crouch, M.A. Malik, M. Motevalli, P. O’Brien, J.H. Park, J.D. Woollins, Eur. J. Inorg. Chem. 171–177 (2004)Google Scholar
  16. 16.
    D. Han, B. Feng, J. Cao, M. Gao, S. Yang, J. Yang, J. Mater. Sci. Mater. Electron. 25, 3639 (2014)CrossRefGoogle Scholar
  17. 17.
    Y. Fu, Z. Zhang, K. Du, Y. Qu, Q. Li, X. Yang, Mater. Lett. 146, 96 (2015)CrossRefGoogle Scholar
  18. 18.
    L. Yang, J. Zhu, D. Xiao, RSC Adv. 2, 8179 (2012)CrossRefGoogle Scholar
  19. 19.
    O.S. Oluwafemi, O.O. Adeyemi, Mater. Lett. 64, 2310 (2010)CrossRefGoogle Scholar
  20. 20.
    O.S. Oluwafemi, O.O. Adeyemi, Mater. Lett. 64, 2310 (2010)CrossRefGoogle Scholar
  21. 21.
    O.S. Oluwafemi, N. Revaprasadu, O.O. Adeyemi, Coll. Surf. B 79, 126 (2010)CrossRefGoogle Scholar
  22. 22.
    R. Xie, L. Li, Y. Li, L. Liu, D. Xiao, J. Zhu, J. Alloys Compds. 509, 3314 (2010)CrossRefGoogle Scholar
  23. 23.
    F. Zan, J. Ren, Luminescence 25, 378 (2010)CrossRefGoogle Scholar
  24. 24.
    B. Dong, L. Cao, G. Su, W. Liu, Chem. Commun. 46, 7331 (2010)CrossRefGoogle Scholar
  25. 25.
    S.S. Florence, J. Rita, A.D. Lawrence, M. Umadevi, Mater. Lett. 86, 129 (2012)CrossRefGoogle Scholar
  26. 26.
    S.S. Florence, M. Umadevi, J. Rita, A.D. Lawrence, Mater. Lett. 108, 5 (2013)CrossRefGoogle Scholar
  27. 27.
    O.S. Oluwafemi, V. Ncapayi, O. Olubomehin, O.A. Osibote, S.P. Songca, Mat. Sci. Semicon. Proc. 27, 427 (2014)CrossRefGoogle Scholar
  28. 28.
    J.L. Pankove, Optical processes in semiconductors (Dover Publications, New York, 1990)Google Scholar
  29. 29.
    L.E. Brus, J. Chem. Phys. 80, 4403 (1984)CrossRefGoogle Scholar
  30. 30.
    R. He, H. Gu, Coll. Surfs. A. 272, 111 (2006)CrossRefGoogle Scholar
  31. 31.
    C.D. Donega, S.G. Hickey, S.F. Wuister, D. Vanmaekelbergh, A. Meijerink, J. phys. Chem. B 107, 489 (2003)CrossRefGoogle Scholar
  32. 32.
    S.L. Cumberland, K.M. Hanif, A. Javier, G.A. Khitrov, G.F. Strouse, S.M. Woessner, C.S. Yun, Chem. Mater. 14, 1576 (2002)CrossRefGoogle Scholar
  33. 33.
    Q. Wang, D. Pan, S. Jiang, X. Ji, L. An, B. Jiang, J. Cryst. Growth 286, 83 (2006)CrossRefGoogle Scholar
  34. 34.
    L. Manna, E.C. Scher, A.P. Alivisatos, J. Am. Chem. Soc. 122, 12700 (2000)CrossRefGoogle Scholar
  35. 35.
    Z.A. Peng, X. Peng, J. Am. Chem. Soc. 124, 3343 (2002)CrossRefGoogle Scholar
  36. 36.
    K. Nose, H. Fujita, T. Omata, S.O.Y. Matsuo, H. Nakamura, H. Maeda, J. Lumin. 126, 21 (2007)CrossRefGoogle Scholar
  37. 37.
    Q. Yang, K. Tang, C. Wang, Y. Qian, S. Zhang, J. Phys. Chem. B 106, 9227 (2002)CrossRefGoogle Scholar
  38. 38.
    Z. Tang, N.A. Kotov, M. Giersig, Science 297, 237 (2002)CrossRefGoogle Scholar
  39. 39.
    L. Qu, Z.A. Peng, X. Peng, Nano Lett. 1, 333 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Oluwatobi. S. Oluwafemi
    • 1
    • 2
    Email author
  • Sneha Mohan
    • 2
  • Oseyemi Olubomehin
    • 3
  • Otolorin .A. Osibote
    • 4
  • Sandile P. Songca
    • 5
  1. 1.Department of Applied ChemistryUniversity of JohannesburgDoornfontein, JohannesburgSouth Africa
  2. 2.Centre for Nanomaterials Science ResearchUniversity of JohannesburgJohannesburgSouth Africa
  3. 3.Department of Chemical SciencesOlabisi Onabanjo UniversityAgo-IwoyeNigeria
  4. 4.Department of PhysicsCape-Peninsula University of TechnologyCape TownSouth Africa
  5. 5.Department of ChemistryWalter Sisulu UniversityMthathaSouth Africa

Personalised recommendations