Fabrication of Ni0.4Zn0.6Fe2O4–BaTiO3 bilayered thin films obtained by spray pyrolysis method for magnetoelectric (ME) effect measurement

  • S. S. Kumbhar
  • M. A. Mahadik
  • V. S. Mohite
  • Y. M. Hunge
  • P. K. Chougule
  • K. Y. Rajpure
  • C. H. Bhosale


The Ni0.4Zn0.6Fe2O4 ferrite, BaTiO3 ferroelectric and Ni0.4Zn0.6Fe2O4–BaTiO3 bilayered magnetoelectric thin films have been synthesized onto the quartz substrates at optimized substrate temperatures (400, 250 °C) using the simple spray pyrolysis technique. These films were characterized for their structural, morphological, dielectric and magnetic properties. The XRD studies reveal that the films are polycrystalline in nature with spinel cubic structure. The morphological study shows the formation of agglomerated cubes like grains. The dielectric constant and dielectric loss is measured as a function of frequency in the frequency range 20 Hz–1 MHz. Impedance spectroscopy is used to study the electrical behavior of these thin films. The saturation magnetization of Ni0.4Zn0.6Fe2O4 ferrite and Ni0.4Zn0.6Fe2O4–BaTiO3 bilayered thin films are 141 and 111 emu cm−3, respectively. The value of magnetoelectric voltage obtained for Ni0.4Zn0.6Fe2O4–BaTiO3 bilayered thin films is about 221 mV.


Ferrite Fe2O4 BaTiO3 Barium Titanate Ferroelectric Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



S. S. Kumbhar is very much thankful to the Department of Physics, Shivaji University, Kolhapur for awarding the Departmental Research Fellowship (DRF) and UGC DSA-I [F.530/3/DRS/2010(SAP-I)], DST FIST-II [SR/FST/PSI-168/2011(G)] programs for the financial support.


  1. 1.
    R. Thomas, J.F. Scott, D.N. Bose, R.S. Katiyar, J. Phys. Condens. Matter 22, 423201–423217 (2010)CrossRefGoogle Scholar
  2. 2.
    S. Zhao, Y. Wu, J. Wan, X. Dong, J. Liu, G. Wang, Appl. Phys. Lett. 92, 012920–012923 (2008)CrossRefGoogle Scholar
  3. 3.
    Y. Wang, J. Hu, Y. Lin, C.W. Nan, NPG Asia Mater. 2, 61–68 (2010)CrossRefGoogle Scholar
  4. 4.
    S. Priya, R. Islam, S. Dong, D. Viehland, J. Electro. Ceram. 19, 147–164 (2007)Google Scholar
  5. 5.
    J. Ma, J. Hu, Z. Li, C. Nan, Adv. Mater. 23, 1062–1087 (2011)CrossRefGoogle Scholar
  6. 6.
    X. Lv, C. Cheng, Y. Xiao, M. Tang, Z. Tang, H. Cai, Y. Zhou, R. Li, Mater. Lett. 100, 7–10 (2013)CrossRefGoogle Scholar
  7. 7.
    P. Yang, J. Zhu, J. Lee, H.Y. Lee, Trans. Nonferrous Met. Soc. China 21, 92–96 (2011)CrossRefGoogle Scholar
  8. 8.
    L. Yan, Y. Yang, Z. Wang, Z. Xing, J. Li, D. Viehland, J. Mater. Sci. 44, 5080–5094 (2009)CrossRefGoogle Scholar
  9. 9.
    M. Lorenz, M. Ziese, G. Wagner, J. Lenzner, C. Kranert, K. Brachwitz, H. Hochmuth, P. Esquinazia, M. Grundmann, Cryst. Eng. Comm. 14, 6477–6486 (2012)CrossRefGoogle Scholar
  10. 10.
    Y. Xu, L. Wang, M. Shi, H. Su, G. Wu, Chin. J. Chem. Phys. 25, 115–119 (2011)CrossRefGoogle Scholar
  11. 11.
    H.C. He, J. Ma, Y.H. Lin, C.W. Nan, J. Phys. D Appl. Phys. 42, 4–095008 (2009)Google Scholar
  12. 12.
    J.G. Na, C.H. Park, N.H. Heo, J. Kim, K. Park, J. Mater. Sci. Mater. El. 10, 59–62 (1999)CrossRefGoogle Scholar
  13. 13.
    O. Kreinin, N.P. Kuzmina, E. Zolotoyabko, A.R. Kaul, Thin Solid Films 515, 6442–6446 (2007)CrossRefGoogle Scholar
  14. 14.
    Y. Zhang, C. Deng, J. Ma, Y. Lin, C.W. Nan, Appl. Phys. Lett. 92, 062911–062913 (2008)CrossRefGoogle Scholar
  15. 15.
    V. Gheevarughese, U. Laletsin, V.M. Petrov, G. Srinivasan, J. Mater. Res. 22, 2130–2135 (2007)CrossRefGoogle Scholar
  16. 16.
    R.A. Kunale, R.H. Kadam, D.R. Mane, IJOART 2, 37–40 (2013)Google Scholar
  17. 17.
    J. Shah, R.K. Kotnala, Appl. Phys. Lett. 104, 142901–142905 (2014)CrossRefGoogle Scholar
  18. 18.
    D.K. Pradhan, R.N.P. Choudhary, T.K. Nath, Appl. Nanosci. 2, 261–273 (2012)CrossRefGoogle Scholar
  19. 19.
    R.A. Zarate, A.L. Cabrera, U.G. Volkmann, V. Fuenzalida, J. Phys. Chem. Solids 59, 1639–1645 (1998)CrossRefGoogle Scholar
  20. 20.
    A.K. Tripathi, V. Chariar, T.C. Goel, P.K.C. Pillai, J. Mater. Sci. Eng. B 25, 34–38 (1994)CrossRefGoogle Scholar
  21. 21.
    U.Y. Hwang, H.S. Park, K.K. Koo, Ind. Eng. Chem. Res. 43, 728–734 (2004)CrossRefGoogle Scholar
  22. 22.
    B.K. Bammannavar, L.R. Naik, B.K. Chougule, J. Appl. Phys. 104, 064123–064128 (2008)CrossRefGoogle Scholar
  23. 23.
    P.B. Belavi, G.N. Chavan, L.R. Naik, V.L. Mathe, R.K. Kotnala, IJSTR 2, 298–306 (2013)Google Scholar
  24. 24.
    V.C. Flores, D.B. Baqués, R.F. Ziolo, Acta Mater. 58, 764–769 (2010)CrossRefGoogle Scholar
  25. 25.
    A.S. Albuquerque, M.V.C. Tolentino, J.D. Ardisson, F.C.C. Moura, R. de Mendonca, W.A.A. Macedo, Ceram. Int. 38, 2225–2231 (2012)CrossRefGoogle Scholar
  26. 26.
    S. Li, E. Wang, C. Tian, B. Mao, Z. Kang, Q. Li, G. Sun, J. Solid State Chem. 181, 1650–1658 (2008)CrossRefGoogle Scholar
  27. 27.
    R. Ayouchi, F. Martın, J.R. Ramos-Barrado, D. Leinen, Surf. Interface Anal. 30, 565–569 (2000)CrossRefGoogle Scholar
  28. 28.
    O. Palchik, J. Zhu, A. Gedanken, J. Mater. Chem. 10, 1251–1254 (2000)CrossRefGoogle Scholar
  29. 29.
    H. Hong, H. Meng, Z. Kun, T. Fang, L. Bin, J. Juan, C. Hao, Z. Liang, L. Qi, Y. Zhen, Chin. Phys. Lett. 22, 2950–2952 (2005)CrossRefGoogle Scholar
  30. 30.
    S.K. Das, B.K. Roul, Chin. Phys. B 24, 067702–067707 (2015)CrossRefGoogle Scholar
  31. 31.
    H. Lv, L. Ma, P. Zeng, D. Ke, T. Peng, J. Mater. Chem. 20, 3665–3672 (2010)CrossRefGoogle Scholar
  32. 32.
    C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrou, J. Am. Ceram. Soc. 81, 677–688 (1998)CrossRefGoogle Scholar
  33. 33.
    B.K. Bammannavar, L.R. Naik, Smart. Mater. Struct. 18, 085013–085019 (2009)CrossRefGoogle Scholar
  34. 34.
    S. Kumaragurubaran, T. Nagata, Y. Tsunekawa, K. Takahashi, S.G. Ri, S. Suzuki, T. Chikyow, Thin Solid Films 592, 29–33 (2015)CrossRefGoogle Scholar
  35. 35.
    A.D. Sheikh, V.L. Mathe, Mater. Res. Bull. 44, 2194–2200 (2009)CrossRefGoogle Scholar
  36. 36.
    J.L. Chen, Z. Xu, B.K. Wang, X. Yao, Mater. Res. Innov. 15, 244–248 (2011)CrossRefGoogle Scholar
  37. 37.
    A. Srinivas, R. Gopalan, V. Chandrasekharan, Solid State Commun. 149, 367–370 (2009)CrossRefGoogle Scholar
  38. 38.
    S.M. Ramay, S.A. Siddiqi, S. Atiq, M.S. Awan, S. Riaz, Chin. J. Chem. Phys. 23, 591–595 (2010)CrossRefGoogle Scholar
  39. 39.
    S.M. Khetre, H.V. Jadhav, P.N. Jagadale, S.R. Kulal, S.R. Bamane, Adv. Appl. Sci. Res. 2, 503–511 (2011)Google Scholar
  40. 40.
    S.M. Patange, S.E. Shirsath, K.S. Lohar, S.S. Jadhav, N. Kulkarni, K.M. Jadhav. Phys. B 406, 663–668 (2011)CrossRefGoogle Scholar
  41. 41.
    U. Ghazanfar, S.A. Siddiqi, G. Abbas, Mater. Sci. Eng. B 118, 132–134 (2005)CrossRefGoogle Scholar
  42. 42.
    N.H. Vasoya, V.K. Lakhani, P.U. Sharma, K.B. Modi, R. Kumar, H.H. Joshi, J. Phys. Condens. Matter 18, 8063–8092 (2006)CrossRefGoogle Scholar
  43. 43.
    S.K. Patil, S.S. Shinde, K.Y. Rajpure, Ceram. Int. 39, 3901–3907 (2013)CrossRefGoogle Scholar
  44. 44.
    S.S. Kumbhar, M.A. Mahadik, V.S. Mohite, K.Y. Rajpure, J.H. Kim, A.V. Moholkar, C.H. Bhosale, J. Magn. Magn. Mater. 363, 114–120 (2014)CrossRefGoogle Scholar
  45. 45.
    S.A. Khader, T. Sankarappa, IJARPS 2, 21–27 (2015)Google Scholar
  46. 46.
    J.I. Martın, J. Nogues, K. Liuc, J.L. Vicent, I.K. Schuller, J. Magn. Magn. Mater. 256, 449–501 (2003)CrossRefGoogle Scholar
  47. 47.
    G. Nabiyouni, M.J. Fesharaki, M. Mozafari, J. Amighian, Chin. Phys. Lett. 27, 126401–126404 (2010)CrossRefGoogle Scholar
  48. 48.
    S. Priya, R. Islam, S. Dong, D. Viehland, J. Electroceram. 19, 147–164 (2007)Google Scholar
  49. 49.
    C. Deng, Y. Zhang, J. Ma, Y. Lin, C. Nan, Acta Mater. 56, 405–412 (2008)CrossRefGoogle Scholar
  50. 50.
    C.G. Zhong, Q. Jiang, J. Phys. D Appl. Phys. 41, 115002–115006 (2008)CrossRefGoogle Scholar
  51. 51.
    D. Bhadra, M.G. Masud, S.K. De, B.K. Chaudhuri, J. Phys. D Appl. Phys. 45, 485002–485008 (2012)CrossRefGoogle Scholar
  52. 52.
    C.M. Kanamadi, L.B. Pujari, B.K. Chougule, J. Magn. Magn. Mater. 295, 139–144 (2005)CrossRefGoogle Scholar
  53. 53.
    M.V. Ramana, N.R. Reddy, B.S. Murty, V.R.K. Murthy, K.V. Sivakumar, Adv. Cond. Matter Phys. 2010, 763406 (2010)Google Scholar
  54. 54.
    Y. Zhou, F.G. Shin, J. Appl. Phys. 100, 043910–043915 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. S. Kumbhar
    • 1
  • M. A. Mahadik
    • 1
  • V. S. Mohite
    • 1
  • Y. M. Hunge
    • 1
  • P. K. Chougule
    • 1
  • K. Y. Rajpure
    • 1
  • C. H. Bhosale
    • 1
  1. 1.Electrochemical Materials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia

Personalised recommendations