Dielectric properties and energy storage behaviors in ZnNb2O6-doped Sr0.97Nd0.02TiO3 ceramics

  • J. Zheng
  • G. H. ChenEmail author
  • X. Chen
  • Q. N. Li
  • J. W. Xu
  • C. L. Yuan
  • C. R. Zhou


Using the solid-state ceramic route, Sr0.97Nd0.02TiO3 ceramics with addition of ZnNb2O6 were prepared, and the phase purity, microstructure, dielectric property and energy-storage performance were investigated. The XRD results suggest the formation of solid solutions for all the studied compositions. The SEM results show the moderate addition of ZnNb2O6 improves the sintering densification and microstructure of the ceramic samples. The breakdown strength (BDS) is notably improved due to the reduction of the grain size and dense uniform microstructure. And the highest BDS of 493 kV/cm can be achieved for the sample with 6 wt% ZnNb2O6 additive. The Sr0.97Nd0.02TiO3 ceramic with 6.0 wt% ZnNb2O6 addition shows the maximum theoretical energy-storage density of 2.37 J/cm3, which is 3.4 times higher than that of pure SrTiO3 in the literature. Therefore, the ZnNb2O6 doped Sr0.97Nd0.02TiO3 ceramics might be a kind of promising energy storage dielectric material.


Dielectric Property Sinter Temperature Polyvinyl Acetate Microwave Dielectric Property Breakdown Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Natural Science Foundation of China (NSFC No. 51162002), Science and Technology Project of Guangxi Returned Personnel (Contract No. 2012-250) and Innovation Project of Graduate Education of GUET (GDYCSZ201485).


  1. 1.
    C. Liu, F. Li, L.P. Ma, H.M. Cheng, Adv. Energy Mater. 22, E28–E62 (2010)CrossRefGoogle Scholar
  2. 2.
    V.S. Puli, D.K. Pradhan, D.B. Chrisey, M. Tomozawa, G.L. Sharma, J.F. Scott, R.S. Katiyar, J. Mater. Sci. 48, 2151–2157 (2013)CrossRefGoogle Scholar
  3. 3.
    L.H. Luo, B.Y. Wang, X.J. Jiang, W.P. Li, J. Mater. Sci. 49, 1659–1665 (2014)CrossRefGoogle Scholar
  4. 4.
    Z. Wang, H.J. Li, L.L. Zhang, Y.P. Pu, Mater. Res. Bull. 53, 28–31 (2014)CrossRefGoogle Scholar
  5. 5.
    J.C. Chen, J. Mater. Sci. Technol. 30, 295–298 (2014)CrossRefGoogle Scholar
  6. 6.
    G.X. Dong, S.W. Ma, J. Du, J.D. Cui, Ceram. Int. 35, 2069–2075 (2009)CrossRefGoogle Scholar
  7. 7.
    Z.Y. Shen, Q.G. Hu, Y.M. Li, Z.M. Wang, W.Q. Luo, Y. Hong, Z.X. Xie, R.H. Liao, J. Am. Ceram. Soc. 96, 2551–2555 (2013)CrossRefGoogle Scholar
  8. 8.
    Z.Y. Shen, Y.M. Li, W.Q. Luo, Z.M. Wang, X.Y. Gu, R.H. Liao, J. Mater. Sci.: Mater. Electron. 24, 704–710 (2013)Google Scholar
  9. 9.
    Z.H. Wu, M.H. Cao, H.T. Yu, Z.H. Yao, D.B. Luo, H.X. Liu, J. Electroceram. 21, 210–213 (2008)CrossRefGoogle Scholar
  10. 10.
    X.R. Wang, Y. Zhang, X.Z. Song, Z.B. Yuan, T. Ma, Q. Zhang, C.S. Deng, T.X. Liang, J. Eur. Ceram. Soc. 32, 559–567 (2012)CrossRefGoogle Scholar
  11. 11.
    H.P. Jeon, S.K. Lee, S.W. Kim, D.K. Choi, Mater. Chem. Phys. 94, 185–189 (2005)CrossRefGoogle Scholar
  12. 12.
    L.X. Li, X.X. Yu, H.C. Cai, Q.W. Liao, Y.M. Han, Z.D. Gao, Mater. Sci. Eng., B 178, 1509–1514 (2013)CrossRefGoogle Scholar
  13. 13.
    F. Gao, J.J. Liu, R.Z. Hong, Z. Li, C.S. Tian, Ceram. Int. 35, 2687–2692 (2009)CrossRefGoogle Scholar
  14. 14.
    T. Wang, X.Y. Wei, Q.Y. Hu, L. Jin, Z. Xu, Y.J. Feng, Mater. Sci. Eng., B 178, 1081–1086 (2013)CrossRefGoogle Scholar
  15. 15.
    A.R. Babu, A.V. Prasadarao, J. Mater. Sci. Lett. 16, 313–315 (1997)CrossRefGoogle Scholar
  16. 16.
    Y.C. Lee, L.G. Teoh, Y.Y. Yeh, C.S. Chiang, J. Ceram. Soc. Jpn. 118, 597–602 (2010)CrossRefGoogle Scholar
  17. 17.
    R.C. Kell, A.C. Greenham, G.C.E. Olds, J. Am. Ceram. Soc. 56, 352–354 (1973)CrossRefGoogle Scholar
  18. 18.
    A. Templeton, X.R. Wang, S.J. Penn, S.J. Webb, L.F. Cohen, N.M. Alford, J. Am. Ceram. Soc. 83, 95–100 (2000)CrossRefGoogle Scholar
  19. 19.
    R.D. Shannon, J. Appl. Phys. 73, 348–366 (1993)CrossRefGoogle Scholar
  20. 20.
    I. Burn, D.M. Smyth, J. Mater. Sci. 7, 339–343 (1972)CrossRefGoogle Scholar
  21. 21.
    Z.Y. Shen, W.Q. Luo, Y.M. Li, Q.G. Hu, Z.M. Wang, X.Y. Gu, J. Mater. Sci.: Mater. Electron. 24, 607–612 (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • J. Zheng
    • 1
  • G. H. Chen
    • 1
    Email author
  • X. Chen
    • 1
  • Q. N. Li
    • 1
  • J. W. Xu
    • 1
  • C. L. Yuan
    • 1
  • C. R. Zhou
    • 1
  1. 1.Guangxi Key Laboratory of Information Materials, College of Materials Science and EngineeringGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations