Advertisement

α-Fe2O3 based nanomaterials as gas sensors

  • A. MirzaeiEmail author
  • B. Hashemi
  • K. Janghorban
Review

Abstract

Interest in detecting and determining concentrations of toxic and flammable gases has constantly been on the increase in recent years due to increase of modernization, industrialization and high standards of life. Detection of such gases is very important in many different fields such as industrial emission control, household and social security, vehicle emission control and environmental monitoring. Metal oxide gas sensors are among most important devices to detect a large variety of gases. α-Fe2O3, an environmental friendly semiconductor (E g = 2.1 eV), is the most stable iron oxide under ambient atmosphere and because of its low cost, high stability, high resistance to corrosion, and its environmentally friendly properties is one of the most important metal oxides for gas sensing applications. This is the first review about gas sensing properties of α-Fe2O3 nanostructures. In this paper gas sensing properties of α-Fe2O3 are extensively reviewed. After a brief explanation about metal oxide gas sensors and α-Fe2O3, sensors based on α-Fe2O3 nanomaterials have been reviewed. Gas sensing section is divided into five subsections: pure α-Fe2O3 gas sensors, metal/α-Fe2O3 gas sensors, metal oxide/α-Fe2O3 gas sensors, polymer/α-Fe2O3 gas sensors and graphene/α-Fe2O3 gas sensors.

Keywords

SnO2 PANI CuFe2O4 TiO2 Nanofibers Adsorbed Oxygen Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Partial support of the Iran Nanotechnology Initiative Council is gratefully acknowledged.

References

  1. 1.
    M. Hjiri, L. El Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, Al-doped ZnO for highly sensitive CO gas sensors. Sens. Actuators B Chem. 196, 413–420 (2014)CrossRefGoogle Scholar
  2. 2.
    T. Hübert, L. Boon-Brett, G. Black, U. Banach, Hydrogen sensors—a review. Sens. Actuators B Chem. 157, 329–352 (2011)CrossRefGoogle Scholar
  3. 3.
    G. Korotcenkov, S.D. Han, J.R. Stetter, Review of electrochemical hydrogen sensors. Chem. Rev. 109, 1402–1433 (2009)CrossRefGoogle Scholar
  4. 4.
    T. Kim, B. Guo, Zn-doped γ-Fe2O3 sensors for flammable gas detection: effect of annealing on sensitivity and stability. J. Ind. Eng. Chem. 17, 158–164 (2011)CrossRefGoogle Scholar
  5. 5.
    N.D. Hoa, N.V. Duy, S.A. El-Safty, N.V. Hieu, Meso-nanoporous semiconducting metal oxides for gas sensor applications. J. Nanomater. 2015, 972025 (2015). doi: 10.1155/2015/972025
  6. 6.
    Patrick J. Sabourin, William E. Bechtold, Rogene F. Henderson, A high pressure liquid chromatographic method for the separation and quantitation of water-soluble radiolabeled benzene metabolites. Anal. Biochem. 170, 316–327 (1988)CrossRefGoogle Scholar
  7. 7.
    P. Vesely, L. Lusk, G. Basarova, J. Seabrooks, D. Ryder, Analysis of aldehydes in beer using solid-phase microextraction with on-fiber derivatization and gas chromatography/mass spectrometry. J. Agric. Food Chem. 51, 6941–6944 (2003)CrossRefGoogle Scholar
  8. 8.
    F. Tavoli, N. Alizadeh, Optical ammonia gas sensor based on nanostructure dye-doped polypyrrole. Sens. Actuators B Chem. 176, 761–767 (2013)CrossRefGoogle Scholar
  9. 9.
    W.P. Jakubik, Surface acoustic wave-based gas sensors. Thin Solid Films 520, 986–993 (2011)CrossRefGoogle Scholar
  10. 10.
    G. Barochi, J. Rossignol, M. Bouvet, Development of microwave gas sensors. Sens. Actuators B Chem. 157, 374–379 (2011)CrossRefGoogle Scholar
  11. 11.
    K. Tajima, F. Qiu, W. Shin, N. Izu, I. Matsubara, N. Murayama, Micromechanical fabrication of low-power thermoelectric hydrogen sensor. Sens. Actuators B 108, 973–978 (2003)CrossRefGoogle Scholar
  12. 12.
    J.B.W.H. Brattain, Surface properties of germanium. Bell Syst. Tech. J. 32, 1 (1952)CrossRefGoogle Scholar
  13. 13.
    T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34, 1502–1503 (1962)CrossRefGoogle Scholar
  14. 14.
    N Taguchi, Japanese patent application, S45-38200, (1962)Google Scholar
  15. 15.
    B.T. Raut, P.R. Godse, S.G. Pawar, M.A. Chougule, D.K. Bandgar, V.B. Patil, Novel method for fabrication of polyaniline–CdS sensor for H2S gas detection. Measurement 45, 94–100 (2012)CrossRefGoogle Scholar
  16. 16.
    G. Neri, Better sensors through chemistry: some selected examples. Sens. Microsyst. Lect. Notes Electr. Eng. 91, 19–30 (2011)CrossRefGoogle Scholar
  17. 17.
    W.J. Moon, J.H. Yu, G.M. Choi, Selective CO gas detection of SnO2–Zn2SnO4 composite gas sensor. Sens. Actuators B Chem. 80, 21–27 (2001)CrossRefGoogle Scholar
  18. 18.
    V. Aroutiounian, Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells. Int. J. Hydrog. Energy 32, 1145–1158 (2007)CrossRefGoogle Scholar
  19. 19.
    S. Singh, A. Singh, B.C. Yadava, P.K. Dwivedi, Fabrication of nanobeads structured perovskite type neodymium iron oxide film: its structural, optical, electrical and LPG sensing investigations. Sens. Actuators B 177, 730–739 (2013)CrossRefGoogle Scholar
  20. 20.
    R.J. Tan, O. Kiang, Semiconductor Gas Sensors: Woodhead Publishing Group (2013)Google Scholar
  21. 21.
    G. Neri, A. Bonavita, G. Micali, G. Rizzo, E. Callone, G. Carturan, Resistive CO gas sensors based on In2O3 and InSnOx nanopowders synthesized via starch-aided sol–gel process for automotive applications. Sens Actuators B 132, 224–233 (2008)CrossRefGoogle Scholar
  22. 22.
    S. Das, V. Jayaraman, SnO2: a comprehensive review on structures and gas sensors. Prog. Mater Sci. 66, 112–255 (2014)CrossRefGoogle Scholar
  23. 23.
    I.-D. Kim, A. Rothschild, H.L. Tuller, Advances and new directions in gas-sensing devices. Acta Mater. 61, 974–1000 (2013)CrossRefGoogle Scholar
  24. 24.
    A. Wei, L. Pan, W. Huang, Recent progress in the ZnO nanostructure-based sensors. Mater. Sci. Eng. B 176, 1409–1421 (2011)CrossRefGoogle Scholar
  25. 25.
    J. Bai, B. Zhou, Titanium dioxide nanomaterials for sensor applications. Chem. Rev. 114(19), 10131–10176 (2014)CrossRefGoogle Scholar
  26. 26.
    N.D. Cuong, D.Q. Khieu, T.T. Hoa, D.T. Quang, P.H. Viet, T.D. Lam, N.D. Hoa, N.V. Hieu, Facile synthesis of α-Fe2O3 nanoparticles for high-performance CO gas sensor. Mater. Res. Bull. 68, 302–307 (2015)CrossRefGoogle Scholar
  27. 27.
    L. Machala, R. Zboril, A. Gedanken, Amorphous iron(III) oxides: a review. J. Phys. Chem. B 111, 4003–4018 (2007)CrossRefGoogle Scholar
  28. 28.
    Z. Wei, X. Wei, S. Wang, D. He, Preparation and visible-light photocatalytic activity of α-Fe2O3/γ-Fe2O3 magnetic heterophase photocatalyst. Mater. Lett. 118, 107–110 (2014)CrossRefGoogle Scholar
  29. 29.
    L. Machala, J. Tucek, R. Zboril, Polymorphous transformations of nanometric iron(III) oxide: a review. Chem. Mater. 23, 3255–3272 (2011)CrossRefGoogle Scholar
  30. 30.
    S. Sakurai, A. Namai, K. Hashimoto, S. Ohkoshi, First observation of phase transformation of all four Fe2O3 phases (γ → ε f → β → α Phase). J. Am. Chem. Soc. 131, 18299–18303 (2009)CrossRefGoogle Scholar
  31. 31.
    A.S. Teja, P.-Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55, 22–45 (2009)CrossRefGoogle Scholar
  32. 32.
    S. Radhakrishnan, K. Krishnamoorthy, C. Sekar, J. Wilson, S.J. Kim, A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Appl. Catal. B 148–149, 22–28 (2014)CrossRefGoogle Scholar
  33. 33.
    S.K. Sahoo, K. Agarwal, A.K. Singh, B.G. Polke, K.C. Raha, Characterization of γ- and α-Fe2O3 nano powders synthesized by emulsion precipitation-calcination route and rheological behaviour of α-Fe2O3. Int. J. Eng. Sci. Technol. 2, 118–126 (2010)Google Scholar
  34. 34.
    N. Ozer, F. Tepehan, Optical and electrochemical characteristics of sol–gel deposited iron oxide films. Sol. Energy Mater. Sol. Cells 65, 141–152 (1999)CrossRefGoogle Scholar
  35. 35.
    P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 424, 1–10 (2012)CrossRefGoogle Scholar
  36. 36.
    U. Schwertmann, R.M. Corne, Iron oxides in the laboratory, preparation and characterization, 2nd edn. (Wiley, New York, 2000)CrossRefGoogle Scholar
  37. 37.
    W.X. Jin, S.Y. Ma, Z.Z. Tie, X.H. Jiang, W.Q. Li, J. Luo, X.L. Xu, T.T. Wang, Hydrothermal synthesis of monodisperse porous cube, cake andspheroid-like α-Fe2O3 particles and their high gas-sensing properties. Sens. Actuators B 220, 243–254 (2015)CrossRefGoogle Scholar
  38. 38.
    S. Boumaza, A. Boudjemaa, S. Omeiri, R. Bouarab, A. Bouguelia, M. Trari, Physicaland photoelectrochemical characterizations of hematite a-Fe2O3: applicationto photocatalytic oxygen evolution. Sol. Energy 84, 715–721 (2010)CrossRefGoogle Scholar
  39. 39.
    Y.Y. Xu, X.F. Rui, Y.Y. Fu, H. Zhang, Magnetic properties of α-Fe2O3 nanowires. Chem. Phys. Lett. 410, 36–38 (2005)CrossRefGoogle Scholar
  40. 40.
    B. Sun, J. Horvat, H.S. Kim, W.S. Kim, J. Ahn, G.X. Wang, Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. J. Phys. Chem. C 114, 18753–18761 (2010)CrossRefGoogle Scholar
  41. 41.
    H. Yan, X. Su, C. Yang, J. Wang, C. Niu, Improved photocatalytic and gas sensing properties of α-Fe2O3 nanoparticles derived from β-FeOOH nanospindles. Ceram. Int. 40, 1729–1733 (2014)CrossRefGoogle Scholar
  42. 42.
    M. Nasibi, M.A. Golozar, G. Rashed, Nano ironoxide(Fe2O3)/carbon black electrodes for electrochemical capacitors. Mater. Lett. 85, 40–43 (2012)CrossRefGoogle Scholar
  43. 43.
    N. Pailhé, A. Wattiaux, M. Gaudon, A. Demourgues, Impact of structural features on pigment properties of α-Fe2O3 haematite. J. Solid State Chem. 181, 2697–2704 (2008)CrossRefGoogle Scholar
  44. 44.
    Z.Y. Fan, X.G. Wen, S.H. Yang, J.G. Lu, Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors. Appl. Phys. Lett. 87(87), 0131131–0131133 (2005)Google Scholar
  45. 45.
    Y.H. Chen, F.A. Li, Kinetic study on removal of copper (II) using goethite and hematite nano-photocatalysts. J. Colloid Interface Sci. 347, 277–281 (2010)CrossRefGoogle Scholar
  46. 46.
    L. Wang, C.-Y. Lee, P. Schmuki, Influence of annealing temperature on photo-electrochemical water splitting of α-Fe2O3films prepared by anodic deposition. Electrochim. Acta 91, 307–313 (2013)CrossRefGoogle Scholar
  47. 47.
    Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sensor Lett. 3, 274–295 (2005)CrossRefGoogle Scholar
  48. 48.
    A. Gurlo, M. Sahm, A. Oprea, N. Barsan, U. Weimar, A p- to n-transition on-Fe2O3-based thick film sensors studied by conductance and work function change measurements. Sens. Actuators B 102, 291–298 (2004)CrossRefGoogle Scholar
  49. 49.
    Z. Fan, X. Wen, S. Yang, J.G. Lu, Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors. Appl. Phys. Lett. 87, 013113 (2005)CrossRefGoogle Scholar
  50. 50.
    Xiaoge Wang, Ammonium mediated hydrothermal synthesis of nanostructured hematite (a-Fe2O3) particles. Mater. Res. Bull. 47, 2513–2571 (2012)CrossRefGoogle Scholar
  51. 51.
    Y. Wang, W. Xiufeng, Preparation and characterization of single-phase α-Fe2O3 nano-powders by Pechini sol–gel method. Mater. Lett. 65, 2062–2065 (2011)CrossRefGoogle Scholar
  52. 52.
    S.M. Reda, Synthesis of ZnO and Fe2O3 nanoparticles by sol–gel method and their application in dye-sensitized solar cells. Mater. Sci. Semicond. Process. 13, 417–425 (2010)CrossRefGoogle Scholar
  53. 53.
    L. Vayssieres, N. Beermann, S.E. Lindquist, A. Hagfeldt, Controlled aqueous chemical growth of oriented threedimensional crystalline nanorod arrays: application to iron(III) oxides. Chem. Mater. 13, 233–235 (2000)CrossRefGoogle Scholar
  54. 54.
    L.H. Han, H. Liu, Y. Wei, In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method. Powder Technol. 207, 42–46 (2011)CrossRefGoogle Scholar
  55. 55.
    B.K. Pandey, A.K. Shahi, J. Shah, R.K. Kotnala, R. Gopala, Optical and magnetic properties of Fe2O3 nanoparticles synthesizedby laser ablation/fragmentation technique in different liquid media. Appl. Surf. Sci. 289, 462–471 (2014)CrossRefGoogle Scholar
  56. 56.
    M. Lie, H. Fjellvag, A. Kjekshus, Growth of Fe2O3 thin films by atomic layer deposition. Thin Solid Films 488, 74–81 (2005)CrossRefGoogle Scholar
  57. 57.
    Y. Wang, J. Cao, S. Wang, X. Guo, J. Zhang, H. Xia, S. Zhang, S. Wu, Facile synthesis of porous α-Fe2O3 nanorods and their application in ethanol sensors. J. Phys. Chem. C 112, 17804–17808 (2008)CrossRefGoogle Scholar
  58. 58.
    L. Suber, P. Imperatori, G. Ausanio, F. Fabbri, H. Hofmeister, Synthesis, morphology, and magnetic characterization of iron oxide nanowires and nanotubes. J. Phys. Chem. B 109, 7103–7109 (2005)CrossRefGoogle Scholar
  59. 59.
    Z. Sun, H. Yuan, Z. Liu, B. Han, X. Zhang, A highly efficient chemical sensor material for H2S: α-Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv. Mater. 17, 2993–2997 (2005)CrossRefGoogle Scholar
  60. 60.
    Z. Zheng, L. Liao, B. Yan, J.X. Zhang, H. Gong, Z.X. Shen, T. Yu, Enhanced field emission from argon plasmatreated ultra-sharp α-Fe2O3 nanoflakes. Nanoscale Res. Lett. 4, 1115–1119 (2009)CrossRefGoogle Scholar
  61. 61.
    J. Huang, M. Yang, C. Gu, M. Zhai, Y. Sun, J. Liu, Hematite solid and hollow spindles: selective synthesis and application in gas sensor and photocatalysis. Mater. Res. Bull. 46, 1211–1221 (2011)CrossRefGoogle Scholar
  62. 62.
    M. Mishra, D.M. Chun, α-Fe2O3 as a photocatalytic material: a review. Appl. Catal. A 498, 126–141 (2015)CrossRefGoogle Scholar
  63. 63.
    J. Ouyang, J. Pei, Q. Kuang, Z. Xie, L. Zheng, Supersaturation-controlled shape evolution of α-Fe2O3 nanocrystals and their facet-dependent catalytic and sensing properties. Appl. Mater. Interfaces 6(15), 12505–12514 (2014)CrossRefGoogle Scholar
  64. 64.
    R.C. Biswal, Pure and Pt-loaded gamma iron oxide as sensor for detection of sub ppm level of acetone. Sens. Actuators B Chem. 157, 183–188 (2011)CrossRefGoogle Scholar
  65. 65.
    N.M. Li, K.M. Li, S. Wang, K.Q. Yang, L.J. Zhang, Q. Chen, W.M. Zhang, Gold embedded maghemite hybrid nanowires and their gas sensing properties. Appl. Mater. Interfaces 7, 10534–10540 (2015)CrossRefGoogle Scholar
  66. 66.
    T. Belin, N. Millot, F. Villieras, O. Bertrand, J.P. Bellat, Structural variations as a function of surface adsorption in nanostructured particles. J. Phys. Chem. B 108, 5333–5340 (2004)CrossRefGoogle Scholar
  67. 67.
    S. Tao, X. Liu, X. Chu, Y. Shen, Preparation and properties of γ-Fe2O3 and Y2O3 doped γ-Fe2O3 by a sol–gel process. Sens. Actuators B Chem. 61, 33–38 (1999)CrossRefGoogle Scholar
  68. 68.
    H.I. Hsiang, F.S. Yen, Effects of mechanical treatment on phase transformation and sintering of nano-sized γ-Fe2O3 powder. Ceram. Int. 29, 1–6 (2003)CrossRefGoogle Scholar
  69. 69.
    C.J. Belle, A. Bonamin, U. Simon, J. Santoyo-Salazar, M. Pauly, S. Bégin-Colinb, G. Pourroy, Size dependent gas sensing properties of spinel iron oxide nanoparticles. Sens. Actuators B 160, 942–950 (2011)CrossRefGoogle Scholar
  70. 70.
    Z. Ai, K. Deng, Q. Wan, L. Zhang, S. Lee, Facile microwave-assisted synthesis and magnetic and gas sensing properties of Fe3O4 nanoroses. J. Phys. Chem. C 114, 6237–6242 (2010)CrossRefGoogle Scholar
  71. 71.
    S.O. Hwang, C.H. Kim, Y. Myung, S.H. Park, J. Park, J. Kim, C.S. Han, J.Y. Kim, Synthesis of vertically aligned manganese-doped Fe3O4 nanowire arrays and their excellent room-temperature gas sensing ability. J. Phys. Chem. C 112, 13911–13916 (2008)CrossRefGoogle Scholar
  72. 72.
    D. Peeters, D. Barreca, G. Carraro, E. Comini, A. Gasparotto, C. Maccato, C. Sada, G. Sberveglieri, Au/ε-Fe2O3 nanocomposites as selective NO2 gas sensors. J. Phys. Chem. C 118, 11813–11819 (2014)CrossRefGoogle Scholar
  73. 73.
    H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B Chem. 192, 607–627 (2014)CrossRefGoogle Scholar
  74. 74.
    G. Errana, Metal oxide nanostructures as gas sensing devices (CRC Press, Boca Raton, 2012)Google Scholar
  75. 75.
    G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B 139, 1–23 (2007)CrossRefGoogle Scholar
  76. 76.
    S. Yamaguchi, Gold collold as applied to the H2S gas sensor. Mater. Chem. 6, 505–508 (1981)CrossRefGoogle Scholar
  77. 77.
    G. Neri, A.M. Visco, S. Galvagno, A. Donato, M. Panzalorto, Au/iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization. Thermochim. Acta 329, 39–46 (1999)CrossRefGoogle Scholar
  78. 78.
    T.Y. Huang, W. Chen, S. Zhang, Z. Kuang, D. Ao, N.R. Alkurd, W. Zhou, W. Liu, W. Shen, Z. Li, A high performance hydrogen sulfide gas sensor based on porous α-Fe2O3 operates at room-temperature. Appl. Surf. Sci. 351, 1025–1033 (2015)CrossRefGoogle Scholar
  79. 79.
    R. Srivastava, S. Singh, U.D. Misra, B.C. Yadav, S. Singh, A. Yadav, Humidity sensor based on nanostructured ferric oxide thick film. Int. J. Green Nanotechnol. 4, 215–218 (2012)CrossRefGoogle Scholar
  80. 80.
    R. Srivastava, B.C. Yadav, Humidity sensor based on NiFe2O4-Fe2O3 nanocomposite. J. Sci. Tech. Res. 3, 43–45 (2013)Google Scholar
  81. 81.
    G. Neri, A. Bonavita, S. Galvagno, N. Donato, A. Caddemi, Electrical characterization of Fe2O3 humidity sensors doped with Li+, Zn2+ and Au3+ ions. Sens. Actuators B 111–112, 71–77 (2005)CrossRefGoogle Scholar
  82. 82.
    V. Balouria, A. Kumar, S. Samanta, A. Singh, A.K. Debnath, A. Mahajan, R.K. Bedi, D.K. Aswal, S.K. Gupta, Nano-crystalline Fe2O3 thin films for ppm level detection of H2S. Sens. Actuators B Chem. 181, 471–478 (2013)CrossRefGoogle Scholar
  83. 83.
    Dewyani Patil, Virendra Patil, Pradip Patil, Highly sensitive and selective LPG sensor based on α-Fe2O3 nanorods. Sens. Actuators B Chem. 152, 299–306 (2011)CrossRefGoogle Scholar
  84. 84.
    X. Gou, G. Wang, J. Park, H. Liu, J. Yang, Monodisperse hematite porous nanospheres: synthesis, characterization, and applications for gas sensors. Nanotechnology 19, 125606–125613 (2008)CrossRefGoogle Scholar
  85. 85.
    L. Huo, Q. Li, H. Zhao, L. Yu, S. Gao, J. Zhao, Sol–gel route to pseudocubic shaped α-Fe2O3 alcohol sensor: preparation and characterization. Sens. Actuators B 107, 915–920 (2005)CrossRefGoogle Scholar
  86. 86.
    P. Sun, L. You, D. Wang, Y. Sun, J. Ma, G. Lu, Synthesis and gas sensing properties of bundle-like α-Fe2O3 nanorods. Sens. Actuators B Chem. 156, 368–374 (2011)CrossRefGoogle Scholar
  87. 87.
    F.H. Zhang, H.Q. Yang, X.L. Xie, L. Li, L.H. Zhang, J. Yu, H. Zhang, B. Liu, Controlled synthesis and gas sensing properties of hollow sea urchin-like α-Fe2O3 nanostructures and α-Fe2O3 nanocubes. Sens. Actuators B Chem. 141, 381–389 (2009)CrossRefGoogle Scholar
  88. 88.
    P. Sun, W. Wang, Y. Liu, Y. Sun, J. Ma, G. Lu, Hydrothermal synthesis of 3D urchin-like α-Fe2O3 nanostructure for gas sensor. Sens. Actuators B 173, 52–57 (2012)CrossRefGoogle Scholar
  89. 89.
    Y. Cao, H. Luo, D. Jia, Low-heating solid-state synthesis and excellent gas-sensing properties of α-Fe2O3 nanoparticles. Sens. Actuators B 176, 618–624 (2013)CrossRefGoogle Scholar
  90. 90.
    P. Gunawan, L. Mei, J. Teo, J. Ma, J. Highfield, Q. Li, Z. Zhong, Ultrahigh sensitivity of Au/1D α-Fe2O3 to acetone and the sensing mechanism. Langmuir 28, 14090–14099 (2012)CrossRefGoogle Scholar
  91. 91.
    S. Liang, H. Bin, J. Ding, J. Zhun, Q. Han, X. Wang, Synthesis of α-Fe2O3 with the aid of graphene and its gas-sensing property to ethanol. Ceram. Int. 41(5), 6978–6984 (2015)CrossRefGoogle Scholar
  92. 92.
    C. Wu, P. Yin, X. Zhu, C.O. Yang, Y. Xie, Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J. Phys. Chem. B 110, 17806–17812 (2006)CrossRefGoogle Scholar
  93. 93.
    X. Hu, J.C. Yu, J. Gong, Q. Li, G. Li, α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv. Mater. 19, 2324–2329 (2007)CrossRefGoogle Scholar
  94. 94.
    L. Wang, Z. Lou, J. Deng, R. Zhang, T. Zhang, Ethanol gas detection using a yolk–shell (core–shell) α-Fe2O3 nanospheres as sensing material. ACS Appl. Mater. Interfaces 7(23), 13098–13104 (2015)CrossRefGoogle Scholar
  95. 95.
    G. Wang, X. Gou, J. Horvat, J. Park, Facile synthesis and characterization of iron oxide semiconductor nanowires for gas sensing application. J. Phys. Chem. C 112, 15220–15225 (2008)CrossRefGoogle Scholar
  96. 96.
    Z. Wu, K. Yu, S. Zhang, Y. Xie, Hematite hollow spheres with a mesoporous shell: controlled synthesis and applications in gas sensor and lithium ion batteries. J. Phys. Chem. C 112, 11307–11313 (2008)CrossRefGoogle Scholar
  97. 97.
    Y. Yang, H. Ma, J. Zhuang, X. Wang, Morphology-controlled synthesis of hematite nanocrystals and their facet effects on gas-sensing properties. Inorg. Chem. 50, 10143–10151 (2011)CrossRefGoogle Scholar
  98. 98.
    D.H. Kim, Y.S. Shim, J.M. Jeon, H.Y. Jeong, S.S. Park, Y.W. Kim, J.S. Kim, J.H. Lee, H.W. Jang, Vertically ordered hematite nanotube array as an ultrasensitive and rapid response acetone sensor. Appl. Mater. Interfaces 6(17), 14779–14784 (2014)CrossRefGoogle Scholar
  99. 99.
    H.J. Song, X.H. Jia, X.Q. Zhang, Controllable fabrication, growth mechanism, and gas sensing properties of hollow hematite polyhedra. J. Mater. Chem. 22, 22699–22705 (2012)CrossRefGoogle Scholar
  100. 100.
    H.M. Chen, Y.Q. Zhao, M.Q. Yang, J.H. He, P.K. Chu, J. Zhang, S.H. Wu, Glycine-assisted hydrothermal synthesis of peculiar porous alpha-Fe2O3 nanospheres with excellent gas-sensing properties. Anal. Chim. Acta 659, 266–273 (2010)CrossRefGoogle Scholar
  101. 101.
    Y.R. Tao, Q.X. Gao, J.L. Di, X.C. Wu, Gas sensors based on alpha-Fe2O3 nanorods, nanotubes and nanocubes. J. Nanosci. Nanotechnol. 13, 5654–5660 (2013)CrossRefGoogle Scholar
  102. 102.
    B.C. Yadav, S. Singh, A. Yadav, T. Shukla, Experimental investigations on nanosized ferric oxide and its LPG sensing. Int. J. Nanosci. 10, 135–139 (2011)CrossRefGoogle Scholar
  103. 103.
    B.C. Yadav, S. Singh, A. Yadav, Nanonails structured ferric oxide thick film as room temperature liquefied petroleum gas (LPG) sensor. Appl. Surf. Sci. 257, 1960–1966 (2011)CrossRefGoogle Scholar
  104. 104.
    S. Singha, N. Vermaa, B.C. Yadava, R. Prakashc, A comparative study on surface morphological investigations of ferric oxide for LPG and opto-electronic humidity sensors. Appl. Surf. Sci. 258, 8780–8789 (2012)CrossRefGoogle Scholar
  105. 105.
    Q. Hao, L. Li, X. Yin, S. Liu, Q. Li, T. Wang, Anomalous conductivity-type transition sensing behaviors of n-type porous α-Fe2O3 nanostructures toward H2S. Mater. Sci. Eng. B 176, 600–605 (2011)CrossRefGoogle Scholar
  106. 106.
    N.V. Long, Y. Yang, M. Yuas, C.M. Thi, Y. Cao, T. Nanng, M. Nogami, Gas-sensing properties of p-type α-Fe2O3 polyhedral particles synthesized via a modified polyol method. RSC Adv. 4, 8250–8255 (2014)CrossRefGoogle Scholar
  107. 107.
    Zhengfei Dai, Chul-Soon Lee, Yahui Tian, Il-Doo Kimb, Jong-Heun Lee, Highly reversible switching from P- to N-type NO2 sensing in a monolayer Fe2O3 inverse opal film and the associated P–N transition phase diagram. J. Mater. Chem. A 3, 3372–3381 (2015)CrossRefGoogle Scholar
  108. 108.
    Peng Sun, Chen Wang, Xin Zhou, Pengfei Cheng, Kengo Shimanoe, Geyu Lua, Noboru Yamazoe, Cu-doped α-Fe2O3 hierarchical microcubes: synthesis and gassensing properties. Sens. Actuators B Chem. 193, 616–622 (2014)CrossRefGoogle Scholar
  109. 109.
    G. Neri, A. Bonavita, G. Rizzo, S. Galvagno, N. Donato, L.S. Caputi, A study of water influence on CO response on gold-doped iron oxide sensors. Sens. Actuators B Chem. 101, 90–96 (2004)CrossRefGoogle Scholar
  110. 110.
    G. Neri, A. Bonavita, S. Galvagno, P. Siciliano, S. Capone, CO and NO2 sensing properties of doped-Fe2O3 thin films prepared by LPD. Sens. Actuators B Chem. 82, 40–47 (2002)CrossRefGoogle Scholar
  111. 111.
    G. Neri, A. Bonavita, G. Micali, N. Donato, F.A. Deorsola, P. Mossino, I. Amato, B. De Benedetti, Ethanol sensors based on Pt-doped tin oxide nanopowders synthesised by gel-combustion. Sens. Actuators B Chem. 117, 196–204 (2006)CrossRefGoogle Scholar
  112. 112.
    G. Neri, A. Bonavita, G. Micali, G. Rizzo, N. Pinna, M. Niederberger, In2O3 and Pt-In2O3 nanopowders for low temperature oxygen sensors. Sens. Actuators B Chem. 127, 455–462 (2007)CrossRefGoogle Scholar
  113. 113.
    G. Neri, A. Bonavita, S. Ipsale, G. Rizzo, C. Baratto, G. Faglia, G. Sberveglieri, Pd- and Ca-doped iron oxide for ethanol vapor sensing. Mater. Sci. Eng. B 139, 41–47 (2007)CrossRefGoogle Scholar
  114. 114.
    Y. Wang, F. Kong, B. Zhu, S. Wang, S. Wu, W. Huang, Synthesis and characterization of Pd-doped α-Fe2O3 H2S sensor with low power consumption. Mater. Sci. Eng. B 140, 98–102 (2007)CrossRefGoogle Scholar
  115. 115.
    A.S.M.I. Uddin, D.-T. Phan, G.-S. Chung, Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid. Sens. Actuators B Chem. 207, 362–369 (2015)CrossRefGoogle Scholar
  116. 116.
    G. Neri, A. Bonavita, G. Micali, G. Rizzo, N. Pinn, M. Niederberger, In2O3 and Pt-In2O3 nanopowders for low temperature oxygen sensors. Sens. Actuators B 127, 455–462 (2007)CrossRefGoogle Scholar
  117. 117.
    M.E. Franke, T.J. Koplin, U. Simon, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2, 36–50 (2006)CrossRefGoogle Scholar
  118. 118.
    P. Rai, Y.-S. Kim, H.-M. Song, M.-K. Song, Y.-T. Yu, The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases. Sens. Actuators B Chem. 165, 133–142 (2012)CrossRefGoogle Scholar
  119. 119.
    A. Cabot, J. Arbiol, J.R. Morante, U. Weimar, N. Bârsan, W. Göpel, Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors. Sens. Actuators B Chem. 70, 87–100 (2000)CrossRefGoogle Scholar
  120. 120.
    S. Basu, P.K. Basu, Nanocrystalline metal oxides for methane sensors: role of noble metals. J. Sens. (2009). doi: 10.1155/2009/861968
  121. 121.
    M. Zhang, Z. Yuan, J. Song, C. Zheng, Improvement and mechanism for the fast response of a Pt/TiO2 gas sensor. Sens. Actuators B Chem. 148, 87–92 (2010)CrossRefGoogle Scholar
  122. 122.
    H. Shan, C. Liu, L. Liua, S. Li, L. Wanga, X. Zhanga, X. Boa, X. Chia, Highly sensitive acetone sensors based on La-doped α-Fe2O3 nanotubes. Sens. Actuators B 184, 243–247 (2013)CrossRefGoogle Scholar
  123. 123.
    Yan Wang, Yanmei Wang, Jianliang Cao, Fanhong Kong, Huijuan Xia, Jun Zhang, Baolin Zhu, Shurong Wang, Wu Shihua, Low-temperature H2S sensors based on Ag-doped α-Fe2O3 nanoparticles. Sens. Actuators B 131, 183–189 (2008)CrossRefGoogle Scholar
  124. 124.
    X.H. Liu, J. Zhang, X.Z. Guo, S.H. Wu, S.R. Wang, Porous α-Fe2O3 decorated by Au nanoparticles and their enhanced sensor performance. Nanotechnology 21, 095501 (2010)CrossRefGoogle Scholar
  125. 125.
    C. Liu, H. Shan, L. Liu, S. Li, H. Li, High sensing properties of Ce-doped α-Fe2O3 nanotubes to acetone. Ceram. Int. 40, 2395–2399 (2014)CrossRefGoogle Scholar
  126. 126.
    Yan Wang, Shurong Wang, Yingqiang Zhao, Baolin Zhu, Fanhong Kong, Da Wang, Wu Shihua, Weiping Huang, Shoumin Zhang, H2S sensing characteristics of Pt-doped α-Fe2O3 thick film sensors. Sens. Actuators B 125, 79–84 (2007)CrossRefGoogle Scholar
  127. 127.
    G. Neri, A. Bonavita, C. Milone, S. Galvagno, Role of the Au oxidation state in the CO sensing mechanism of Au/iron oxide-based gas sensors. Sens. Actuators B Chem. 93, 402–408 (2003)CrossRefGoogle Scholar
  128. 128.
    G. Picasso, M.R.S. Kou, O. Vargasmachuca, J. Rojas, C. Zavala, A. Lopez, S. Irusta, Sensors based on porous Pd-doped hematite (a-Fe2O3) for LPG detection. Microporous Mesoporous Mater. 185, 79–85 (2014)CrossRefGoogle Scholar
  129. 129.
    A. Mirzaei, K. Janghorban, B. Hashemi, A. Bonavita, M. Bonyani, S.G. Leonardi, G. Neri, Synthesis, characterization and gas sensing properties of Ag@α-Fe2O3 core–shell nanocomposites. Nanomaterials 5, 737 (2015)CrossRefGoogle Scholar
  130. 130.
    J. Zhang, X. Liu, L. Wang, T. Yang, X. Guo, S. Wu, S. Wang, S. Zhang, Au-functionalized hematite hybrid nanospindles: general synthesis, gas sensing and catalytic properties. J. Phys. Chem. C 115, 5352–5357 (2011)CrossRefGoogle Scholar
  131. 131.
    Peng Sun, Yaxin Cai, Du Sisi, Xu Xiumei, Lu You, Jian Ma, Fengmin Liu, Xishuang Liang, Yanfeng Sun, Lu Geyu, Hierarchical α-Fe2O3/SnO2 semiconductor composites: hydrothermal synthesis and gas sensing properties. Sens. Actuators B Chem. 182, 336–343 (2013)CrossRefGoogle Scholar
  132. 132.
    Y.F. Kang, L.W. Wang, Y.S. Wang, H.X. Zhang, Y. Wang, D.T. Hong, Y.Q. Qu, S.R. Wang, Construction and enhanced gas sensing performances of CuO-modified α-Fe2O3 hybrid hollow spheres. Sens. Actuators B Chem. 177, 570–576 (2013)CrossRefGoogle Scholar
  133. 133.
    Shufeng Si, Chunhui Li, Xun Wang, Qing Peng, Yadong Li, Fe2O3/ZnO core–shell nanorods for gas sensors. Sens. Actuators B Chem. 119, 52–56 (2006)CrossRefGoogle Scholar
  134. 134.
    Y.J. Chen, C.L. Zhu, X.L. Shi, M.S. Cao, H.B. Jin, The synthesis and selective gas sensing characteristics of SnO2/α-Fe2O3 hierarchical nanostructures. Nanotechnology 19, 205603 (2008)CrossRefGoogle Scholar
  135. 135.
    C.L. Zhu, Y.J. Chen, R.X. Wang, L.J. Wang, M.S. Cao, X.L. Shi, Synthesis and enhanced ethanol sensing properties of α-Fe2O3/ZnO heteronanostructures. Sens. Actuators B 140, 185–189 (2009)CrossRefGoogle Scholar
  136. 136.
    L. Huang, H. Fan, Room-temperature solid state synthesis of ZnO/α-Fe2O3 hierarchical nanostructures and their enhanced gas-sensing properties. Sens. Actuators B 171–172, 1257–1263 (2010)Google Scholar
  137. 137.
    Maria I. Ivanovskaya, Dzmitry A. Kotsikau, Antonietta Taurino, Pietro Siciliano, Structural distinctions of Fe2O3–In2O3 composites obtained by various sol–gel procedures, and their gas-sensing features. Sens. Actuators B 124, 133–142 (2007)CrossRefGoogle Scholar
  138. 138.
    M.R. Mohammadi, D.J. Fray, Low temperature nanocrystallineTiO2–Fe2O3 mixed oxide by aparticulate sol–gel route: physical and sensing characteristics. Physica E 46, 43–51 (2012)CrossRefGoogle Scholar
  139. 139.
    H. Tang, M. Yan, H. Zhang, S. Li, X. Ma, M. Wang, D. Yang, A selective NH3 gas sensor based on Fe2O3–ZnO nanocomposites at room temperature. Sens. Actuators B 114, 910–915 (2006)CrossRefGoogle Scholar
  140. 140.
    O.K. Tan, W. Cao, W. Zhu, J.W. Chai, J.S. Pan, Ethanol sensors based on nano-sized α-Fe2O3 with SnO2, ZrO2, TiO2 solid solutions. Sens. Actuators B Chem. 93, 396–401 (2003)CrossRefGoogle Scholar
  141. 141.
    B.B. Wang, X.X. Fu, F. Liu, S.L. Shi, J.P. Cheng, X.B. Zhang, Fabrication and gas sensing properties of hollow core–shell SnO2/α-Fe2O3 heterogeneous structures. J. Alloys Compd. 587, 82–89 (2014)CrossRefGoogle Scholar
  142. 142.
    X. Liu, Z. Xu, Y. Liu, Y. Shen, A novel high performance ethanol gas sensor based on CdO–Fe2O3 semiconducting materials. Sens. Actuators 52, 270–273 (1998)CrossRefGoogle Scholar
  143. 143.
    C. Zhao, W. Hu, Z. Zhang, J. Zhou, X. Pan, E. Xie, Effects of SnO2 additives on nanostructure and gas-sensing propertiesof α-Fe2O3 nanotubes. Sens. Actuators B 195, 486–493 (2014)CrossRefGoogle Scholar
  144. 144.
    O.K. Tan, W. Cao, W. Zhu, Alcohol sensor based on a non-equilibrium nanostructured xZrO2–(1−x)α-Fe2O3 solid solution system. Sens. Actuators B 63, 129–134 (2000)CrossRefGoogle Scholar
  145. 145.
    J. Zhang, X.H. Liu, L.W. Wang, T.L. Yang, X.Z. Guo, S.H. Wu, S.R. Wang, S.M. Zhang, Synthesis and gas sensing properties of α-Fe2O3@ ZnO core–shell nanospindles. Nanotechnology 22, 185501 (2011)CrossRefGoogle Scholar
  146. 146.
    J. Zhang, G. Zhu, X. Shen, Z. Ji, K. Chen, α-Fe2O3 nanospindles loaded with ZnO nanocrystals: synthesis and improved gas sensing performance. Cryst. Res. Technol. 49, 452–459 (2014)CrossRefGoogle Scholar
  147. 147.
    G.X. Tao, X.Q. Liu, Effect of α-Fe2O3 on the conductance and gas-sensing properties on In2O3. Acta Phys. Chim. Sin. 17, 887–891 (2001)Google Scholar
  148. 148.
    H. Shan, C. Liu, L. Liu, J. Zhang, H. Li, Z. Liu, X. Zhang, X. Bo, X.Chi, Excellent toluene sensing properties of SnO2–Fe2O3 interconnected nanotubes. ACS Appl. Mater. Interfaces 5(13), 6376–6380 (2013)CrossRefGoogle Scholar
  149. 149.
    C.L. Zhu, H.L. Yu, Y. Zhang, T.S. Wang, Q.Y. Ouyang, L.H. Qi, Y.J. Chen, X.Y. Xue, Fe2O3/TiO2 tube-like nanostructures: synthesis, structural transformation and the enhanced sensing properties. Appl. Mater. Interfaces 4, 665–671 (2012)CrossRefGoogle Scholar
  150. 150.
    S.L. Sharp, G. Kumar, E.P. Vicenzi, A.B. Bocarsly, M. Heibel, Formation and structure of a tin-iron oxide solid-state system with potential applications in carbon monoxide sensing through the use of cyanogel chemistry. Chem. Mater. 10, 880–885 (1998)CrossRefGoogle Scholar
  151. 151.
    Z. Tianshu, P. Hing, Z. Ruifang, Improvements in α-Fe2O3 ceramic sensors for reducing gases by addition of Sb2O3. J. Mater. Sci. 35, 1419–1425 (2000)CrossRefGoogle Scholar
  152. 152.
    P. Sun, C. Wang, J. Liu, X. Zhou, X. Li, X. Hu, G.Lu, Hierarchical assembly of α-Fe2O3 nanosheets on SnO2 hollow nanospheres with enhanced ethanol sensing properties. Appl. Mater. Interfaces 7(34), 19119–19125 (2015)CrossRefGoogle Scholar
  153. 153.
    C. Wang, X. Cheng, X. Zhou, P. Sun, X. Hu, K. Shimanoe, G. Lu, N. Yamazoe, Hierarchical α-Fe2O3/NiO composites with a hollow structure for a gas sensor. Appl. Mater. Interfaces 6, 12031–12037 (2014)CrossRefGoogle Scholar
  154. 154.
    W. Zhu, O.K. Tan, J.Z. Jiang, A new model and gas sensitivity of nonequilibrium xSnO2-(1-x)a-Fe2O3 nanopowders prepared by mechanical alloying. J. Mater. Sci. Mater. Electron. 9, 275–278 (1998)CrossRefGoogle Scholar
  155. 155.
    X. Zhou, Y. Xiao, M. Wang, P. Sun, F. Liu, X. Liang, X. Li, G. Lu, Highly enhanced sensing properties for ZnO nanoparticle-decorated round-edged α-Fe2O3 hexahedrons. Appl. Mater. Interfaces 7(16), 8743–8749 (2015)CrossRefGoogle Scholar
  156. 156.
    S. Vallejos, I. GràCia, E.Figueras, C. Cané, Nanoscale Heterostructures Based on Fe2O3@WO3−x nanoneedles and their direct integration into flexible transducing platforms for toluene sensing. Appl. Mater. Interfaces 7(33), 18638–18649 (2015)CrossRefGoogle Scholar
  157. 157.
    S. Singh, A. Singh, B.C. Yadav, P. Tandon, Synthesis, characterization, magnetic measurements and liquefied petroleum gas sensing properties of nanostructured cobalt ferrite and ferric oxide. Mater. Sci. Semicond. Process. 23, 122–135 (2014)CrossRefGoogle Scholar
  158. 158.
    R. Srivastavaa, B.C. Yadav, Nanostructured ZnFe2O4 thick film as room temperature liquefied petroleum gas sensor. J. Exp. Nanosci. 10, 703–717 (2015)CrossRefGoogle Scholar
  159. 159.
    S. Singh, B.C. Yadav, A. Singh, P.K. Dwivedi, Synthesis of nanostructured iron-antimonate and its application in liquefied petroleum gas sensor. Adv. Mater. Lett. 3, 154–160 (2012)CrossRefGoogle Scholar
  160. 160.
    A. Singh, S. Singh, B.D. Joshi, B.C. Anujshukla, P.Tandon Yadav, Synthesis, characterization, magnetic properties and gas sensing applications of ZnxCu1−xFe2O4 (0 ≤ x ≤ 0.8) nanocomposites. Mater. Sci. Semicond. Process. 27, 934–949 (2014)CrossRefGoogle Scholar
  161. 161.
    S. Singha, B.C. Yadava, R. Prakash, B. Bajaj, J.R. Lee, Synthesis of nanorods and mixed shaped copper ferrite and their applications as liquefied petroleum gas sensor. Appl. Surf. Sci. 257, 10763–10770 (2011)CrossRefGoogle Scholar
  162. 162.
    N. Verma, S. Singh, R. Srivastava, B.C. Yadav, Fabrication of iron titanium oxide thin film and its application as opto-electronic humidity and liquefied petroleum gas sensors. Opt. Laser Technol. 57, 181–188 (2014)CrossRefGoogle Scholar
  163. 163.
    J. Ming, Y.Q. Wu, L.Y. Wang, Y.C. Tu, F.Y. Zhao, CO2-assisted template synthesis of porous hollow bi-phase gamma-/alpha-Fe2O3 with high sensor property. J. Mater. Chem. 21, 17776–17782 (2011)CrossRefGoogle Scholar
  164. 164.
    S. Yan, G. Zan, Q. Wu, An ultrahigh sensitive and selective sensing material for ethanol: α-/γ-Fe2O3 mixed-phase mesoporous nanofiber. Nano Res. 8(11), 3673–3686 (2015)CrossRefGoogle Scholar
  165. 165.
    Y.V. Kaneti, J. Moriceau, M. Liu, Y. Yuan, Q. Zakaria, X. Jianga, A. Yu, Hydrothermal synthesis of ternary α-Fe2O3–ZnO–Au nanocompositeswith high gas-sensing performance. Sens. Actuators B 209, 889–897 (2015)CrossRefGoogle Scholar
  166. 166.
    G. Neri, A. Bonavita, G. Rizzo, S. Galvagno, S. Capone, P. Siciliano, Methanol gas-sensing properties of CeO2–Fe2O3 thin films. Sens. Actuators B 114, 687–695 (2006)CrossRefGoogle Scholar
  167. 167.
    Z. Lou, F. Li, J. Deng, L. Wang, T. Zhang, Branch-like hierarchical heterostructure (α-Fe2O3/TiO2): a novel sensing material for trimethylamine gas sensor. Appl. Mater. Interfaces 5, 12310–12316 (2013)CrossRefGoogle Scholar
  168. 168.
    R. Srivastava, B.C. Yadav, Ferrite materials: introduction, synthesis techniques, and applications as sensors. Int. J. Green Nanotechnol. 4, 141–154 (2012)CrossRefGoogle Scholar
  169. 169.
    S. Singh, B.C. Yadav, M. Singh, R. Kothari, A review report on nanostructured ferrites as liquefied petroleum gas sensor. Int. J. Sci. Technol Soc. 1, 5–21 (2015)Google Scholar
  170. 170.
    M. Song, F. Liu, X. Ma, Study on preparation and gas sensing property of PANI. Int. J. Control Autom. 8, 267–274 (2015)CrossRefGoogle Scholar
  171. 171.
    J.J. Maisik, A. Hooper, B.C. Tofield, Conducting polymer gas sensors. J. Chem. Soc. Faraday Trans. 82, 1117–1126 (1986)CrossRefGoogle Scholar
  172. 172.
    K. Suri, S. Annaporni, A.K. Sarkar, R.P. Tandon, Gas and humidity sensors based on iron oxide polypyrrole nanocomposites. Sens. Actuators B 81, 277–282 (2002)CrossRefGoogle Scholar
  173. 173.
    A. Kaushik, R. Kumar, S.K. Arya, M. Nair, B.D. Malhotra, S. Bhansali, Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. Chem. Rev. 115(11), 4571–4606 (2015)CrossRefGoogle Scholar
  174. 174.
    H. Bai, G. Shi, Gas sensors based on conducting polymers. Sensors 7, 267–307 (2007)CrossRefGoogle Scholar
  175. 175.
    D.K. Bandgar, S.T. Navale, A.T. Mane, S.K. Gupta, D.K. Aswal, V.B. Patil, Ammonia sensing properties of polyaniline/a-Fe2O3 hybrid nanocomposites. Synth. Met. 204, 1–9 (2015)CrossRefGoogle Scholar
  176. 176.
    J. Gong, Y. Li, Z. Hu, Z. Zhou, Y. Deng, Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers. J Phys. Chem. C 114, 9970–9974 (2010)CrossRefGoogle Scholar
  177. 177.
    D.W. Hatchett, M. Josowicz, Composites of intrinsically conducting polymers as sensing nanomaterials. Chem. Rev. 108, 746–769 (2008)CrossRefGoogle Scholar
  178. 178.
    L. Geng, S. Wang, Y. Zhao, P. Li, S. Zhang, W. Huang, S. Wu, Study of the primary sensitivity of polypyrrole/r-Fe2O3 to toxic gases. Mater. Chem. Phys. 99, 15–19 (2006)CrossRefGoogle Scholar
  179. 179.
    S.T. Navale, G.D. Khuspe, M.A. Chougule, V.B. Patil, Room temperatureNO2 gas sensorbasedonPPy/α-Fe2O3 hybrid nanocomposites. Ceram. Int. 40, 8013–8020 (2014)CrossRefGoogle Scholar
  180. 180.
    S.T. Navale, G.D. Khuspe, M.A. Chougule, V.B. Patil, Camphor sulfonic acid doped PPy/α-Fe2O3 hybrid nanocomposites as NO2 sensors. RSC Adv. 4, 27998–28004 (2014)CrossRefGoogle Scholar
  181. 181.
    S.T. Navale, G.D. Khuspe, M.A. Chougule, V.B. Patil, Polypyrrole, α-Fe2O3 and their hybrid nanocomposite sensor: an impedance spectroscopy study. Org. Electron. 15, 2159–2167 (2014)CrossRefGoogle Scholar
  182. 182.
    F. Tudorache, M. Grigoraş, Study of polyaniline—iron oxides composites using for gas detection. Optoelectron. Adv. Mater. Rapid Commun. 4, 43–47 (2010)Google Scholar
  183. 183.
    Y. Wu, S. Xing, S. Jing, T. Zhou, C. Zhao, Preparation of polyaniline/Fe2O3 composite dispersions in the presence of dodecylbenzene sulfonic acid. e-Polymers 103, 1–7 (2007)Google Scholar
  184. 184.
    A. Tomescu, C.E. Simion, R. Alexandrescu, I. Morjan, M. Scarisoreanu, Sensitivity to reducing gases of polymer-iron nanocomposite materials. Rom. J. Inform. Sci. Technol. 11, 85–95 (2008)Google Scholar
  185. 185.
    D. K. Bandgar, S.T. Navale, M. Naushad, R.S. Mane, F.J. Stadler, V.B. Patil, Ultra-sensitive polyaniline-iron oxide nanocomposite room temperature flexible ammonia sensor. RSC Adv. 5, 68964–68971 (2015)CrossRefGoogle Scholar
  186. 186.
    Novoselov Ks, Geim Ak, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  187. 187.
    S. Liang, J. Zhu, C. Wang, S. Yu, H. Bia, X. Liua, X. Wang, Fabrication of α-Fe2O3@graphene nanostructures for enhancedgas-sensing property to ethanol. Appl. Surf. Sci. 292, 278–284 (2014)CrossRefGoogle Scholar
  188. 188.
    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)CrossRefGoogle Scholar
  189. 189.
    S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators B 202, 272–278 (2014)CrossRefGoogle Scholar
  190. 190.
    F.-L. Meng, Z. Guo, X.J. Huang, Graphene-based hybrids for chemiresistive gas sensors. TrAC Trends Anal. Chem. 68, 37–47 (2015)CrossRefGoogle Scholar
  191. 191.
    Y. Wang, S. Gong, Cotton-like Fe 2 O 3 anchored on graphene sheets for improved NO 2 sensing at room temperature (Mater. Electron., J Mater Sci, 2015)Google Scholar
  192. 192.
    Y.L. Dong, X.F. Zhang, X.L. Cheng, Y.M. Xu, S. Gao, H. Zhao, L.H. Huo, Highly selective NO2 sensor at room temperature based on the nanocomposites of hierarchical nanosphere-like α-Fe2O3 and reduced graphene oxide. RSC Adv. 4, 57493–57500 (2014)CrossRefGoogle Scholar
  193. 193.
    Z. Jiang, J. Li, H. Aslan, Q. Li, Y. Li, M. Chen, Y. Huang, J.P. Froning, M. Otyepka, R. Zboril, F. Besenbacherb, M. Dong, A high efficiency H2S gas sensor material: paper like Fe2O3/graphene nanosheets and structural alignment dependency of device efficiency. J. Phys. Chem. A 2, 6714–6717 (2014)Google Scholar
  194. 194.
    V.E. Bochenkov, G.B. Sergeev, Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures, in Metal Oxide Nanostructures and Their Applications, vol. 3, ed. by A. U. a. Y.B. Hahn (American Scientific Publishers, 2010), pp. 31–52Google Scholar
  195. 195.
    D.K. Bandgar, S.T. Navale, G.D. Khuspe, S.A. Pawar, R.N. Mulik, V.B. Patil, Novel route for fabrication of nanostructured α-Fe2O3 gas sensor. Mater. Sci. Semicond. Process. 17, 67–73 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Engineering, Materials EngineeringShiraz UniversityShirazIran

Personalised recommendations