Novel CdS nanorods/g-C3N4 nanosheets 1-D/2-D hybrid architectures: an in situ growth route and excellent visible light photoelectrochemical performances

  • Zesheng LiEmail author
  • Zhisen Liu
  • Bolin Li
  • Dehao Li
  • Chunyu Ge
  • Yueping FangEmail author


An efficient “in situ growth” strategy was exploited to create the g-C3N4 nanosheets (NSs) and CdS nanorods (NRs) 1-D/2-D hybrid architectures, i.e. CdS NRs/g-C3N4 NSs nanocomposites, from cadmium-containing carbon nitride nanosheets (Cd/g-C3N4) compounds. The novel polymer/semiconductor hybrid material demonstrates very high photoelectrochemical response under visible light irradiation. The CdS NRs/g-C3N4 NSs electrode displays the largest photocurrent (about 100 μA/cm2), which is about 30 times compared with that of pristine g-C3N4 electrode (about 3.5 μA/cm2). The maximum incident photon-to-electron conversion efficiency (IPCE) value is up to 27 % for CdS NRs/g-C3N4 NSs electrode, which is much higher than that of pristine g-C3N4 electrode (1.2 %). The elevated photoelectrochemical performances are originated from the direct physical and electronic contact between the interfaces of the two semiconductor nanomaterials.


Carbon Nitride Hybrid Architecture Graphitic Carbon Nitride Photoelectrochemical Performance Stable Compatibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the National Science Foundation of China (21443006) and Provincial Science Foundation of Guangdong (2014A030310179).


  1. 1.
    J. Liebig, Ann. Pharm. 10, 10 (1834)Google Scholar
  2. 2.
    Y. Wang, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 51, 68–89 (2012)CrossRefGoogle Scholar
  3. 3.
    Z. Zhou, J. Wang, J. Yu, Y. Shen, Y. Li, A. Liu, S. Liu, Y. Zhang, J. Am. Chem. Soc. 137, 2179–2182 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Grätzel, Nature 414, 338–344 (2001)CrossRefGoogle Scholar
  5. 5.
    J. Xu, I. Herraiz-Cardona, X. Yang, S. Gimenez, Adv. Opt. Mater. (2015). doi: 10.1002/adom.201500010 Google Scholar
  6. 6.
    X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8, 76–80 (2009)CrossRefGoogle Scholar
  7. 7.
    Y. Bu, Z. Chen, J. Yu, W. Li, Electrochim. Acta 88, 294–300 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Lublow, A. Fischer, C. Merschjann, F. Yang, T. Schedel-Niedrig, J. Veyand, Y. Chabald, J. Mater. Chem. A 2, 12697–12702 (2014)CrossRefGoogle Scholar
  9. 9.
    Y. Zhang, M. Antonietti, Chem. Asian J. 5, 1307–1311 (2010)Google Scholar
  10. 10.
    S. Li, C. Chang, C. Lin, Y. Lin, C. Chang, J. Yang, M. Chu, C. Chen, J. Am. Chem. Soc. 133, 11614–11620 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Osial, J. Widera, K. Jackowska, Electrochim. Acta 122, 275–281 (2014)CrossRefGoogle Scholar
  12. 12.
    N. Bansal, F. OMahony, T. Lutz, S.A. Haque, Adv. Energy Mater. 3, 986–990 (2013)CrossRefGoogle Scholar
  13. 13.
    J. Jung, X. Pang, C. Feng, Z. Lin, Langmuir 29, 8086–8092 (2013)CrossRefGoogle Scholar
  14. 14.
    Y.S. Kwon, J. Lim, H. Yun, Y. Kim, T. Park, Energy Environ. Sci. 7, 1454–1460 (2014)CrossRefGoogle Scholar
  15. 15.
    C. Janáky, W. Chanmanee, K. Rajeshwar, Electrochim. Acta 122, 303–309 (2014)CrossRefGoogle Scholar
  16. 16.
    S. Jander, A. Kornowski, H. Weller, Nano Lett. 11, 5179–5183 (2011)CrossRefGoogle Scholar
  17. 17.
    H. Li, C. Yao, L. Meng, H. Sun, J. Huang, Q. Gong, Electrochim. Acta 108, 45–50 (2013)CrossRefGoogle Scholar
  18. 18.
    Z. Fu, T. Jiang, Z. Liu, D. Wang, L. Wang, T. Xie, Electrochim. Acta 129, 358–363 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Tian, Z. Zhao, A. Kumar, R.I. Boughtonc, H. Liu, Chem. Soc. Rev. 43, 6920–6937 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Xu, T. Liang, M. Shi, H. Chen, Chem. Rev. 113, 3766–3798 (2013)CrossRefGoogle Scholar
  21. 21.
    J. Liu, H. Bai, Y. Wang, Z. Liu, X. Zhang, D. Sun, Adv. Funct. Mater. 20, 4175–4181 (2010)CrossRefGoogle Scholar
  22. 22.
    W. Bai, H. Huang, Y. Li, H. Zhang, B. Liang, R. Guo, L. Du, Z. Zhang, Electrochim. Acta 117, 322–328 (2014)CrossRefGoogle Scholar
  23. 23.
    B. Xu, P. He, H. Liu, P. Wang, G. Zhou, X. Wang, Angew. Chem. 126, 2371–2375 (2014)CrossRefGoogle Scholar
  24. 24.
    H. Zhang, Q. Huang, Y. Huang, F. Li, W. Zhang, C. Wei, J. Chen, P. Dai, L. Huang, Z. Huang, L. Kang, S. Hua, A. Hao, Electrochim. Acta 142, 125–131 (2014)CrossRefGoogle Scholar
  25. 25.
    P. Zhang, X. Li, C. Shao, Y. Liu, J. Mater. Chem. A 3, 3281–3284 (2015)CrossRefGoogle Scholar
  26. 26.
    L. Ge, F. Zuo, J. Liu, Q. Ma, C. Wang, D. Sun, L. Bartels, P. Feng, J. Phys. Chem. C 116, 13708–13714 (2012)CrossRefGoogle Scholar
  27. 27.
    S. Cao, Y. Yuan, J. Fang, M. Shahjamali, F. Boey, J. Barbera, S. Loo, C. Xue, Int. J. Hydrog Energy 38, 1258–1266 (2013)CrossRefGoogle Scholar
  28. 28.
    D. Wang, Z. Xu, Q. Luo, X. Li, J. An, R. Yin, C. Bao, J. Mater. Sci. (2015). doi: 10.1007/s10853-015-9417-y Google Scholar
  29. 29.
    A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  30. 30.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785–789 (1988)CrossRefGoogle Scholar
  31. 31.
    P.C. Hariharan, J.A. Pople, Theor. Chim. Acta 28, 213–222 (1973)CrossRefGoogle Scholar
  32. 32.
    P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299–310 (1985)CrossRefGoogle Scholar
  33. 33.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, Gaussian 03, Revision B.05 (Gaussian Inc., Pittsburgh, PA, 2003)Google Scholar
  34. 34.
    Z. Li, S. Yang, J. Zhou, D. Li, X. Zhou, C. Ge, Y. Fang, Chem. Eng. J. 241, 344–351 (2014)CrossRefGoogle Scholar
  35. 35.
    H. Ji, F. Chang, X. Hua, W. Qin, J. Shen, Chem. Eng. J. 218, 183–190 (2013)CrossRefGoogle Scholar
  36. 36.
    J. Fu, B. Chang, Y. Tian, F. Xia, X. Dong, J. Mater. Chem. A 1, 3083–3090 (2013)CrossRefGoogle Scholar
  37. 37.
    Z. Fang, Y. Wang, J. Song, Y. Sun, J. Zhou, R. Xu, H. Duan, Nanoscale 5, 9830–9838 (2013)CrossRefGoogle Scholar
  38. 38.
    X. Wang, X. Chen, A. Thomas, X. Fu, M. Antonietti, Adv. Mater. 21, 1609–1612 (2009)CrossRefGoogle Scholar
  39. 39.
    J. Zhang, G. Zhang, X. Chen, S. Lin, L. Mchlmann, G. Doega, G. Lipner, M. Antonietti, S. Blechert, X. Wang, Angew. Chem. Int. Ed. 51, 3183–3187 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Development Center of Technology for Petrochemical Pollution Control and Cleaner Production of Guangdong Universitites, College of Chemical EngineeringGuangdong University of Petrochemical TechnologyMaomingChina
  2. 2.Institute of Biomaterial, College of ScienceSouth China Agricultural UniversityGuangzhouChina

Personalised recommendations