Advertisement

Solid-state method for incorporation of lead sulfide nanoplates in poly(3,4-ethylenedioxythiophene) matrix as NIR materials

  • Hamid DehghaniEmail author
  • Ahmadreza Afraz
Article

Abstract

We investigate the direct incorporation of lead sulfide nanoplates (PbS-NP) in poly(3,4-ethylenedioxythiophene) (PEDOT) matrix without any additives. The PbS-NP was synthesized by using an ultrasonic assistance simple method and composite of them with PEDOT was carried out by a simple solid-state polymerization method. The TEM images, X-ray diffraction patterns and absorption spectra confirm the incorporation of PbS-NP in PEDOT matrix. The XRD pattern showed that the prepared PbS-NPs are crystalline in cubic rock salt structure with 8 nm average grain size. The UV/Vis/NIR spectrum of PEDOT/PbS-NP nanocomposite shows a characteristic peak at NIR region and a large blue shift rather than bulk lead sulfide. This shift confirms synergetic effect between PEDOT matrix and PbS-NPs and presence of quantum confinement effect for prepared PbS-NP. In addition, this characteristic peak is very much dependent on the PbS-NP concentration and can be used for design tunable NIR materials.

Keywords

Rock Salt Structure PEDOT Film Pure PEDOT PEDOT Matrix PEDOT Conducting Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors greatly acknowledge Malek-Ashtar University of Technology for the financial support from the Grant Research Council.

References

  1. 1.
    A.A. Rafati, A.R.A. Borujeni, M. Najafi, A. Bagheri, Mater. Charact. 62, 94 (2011)CrossRefGoogle Scholar
  2. 2.
    A.A. Rafati, A.A. Borujeni, M. Najafi, A. Hajian, J. Mol. Liq. 174, 124 (2012)CrossRefGoogle Scholar
  3. 3.
    J. Xie, Q.F. Lu, Q. Chen, J. Mater. Sci. Mater. Electron. 26, 2669 (2015)CrossRefGoogle Scholar
  4. 4.
    P. Karasiński, C. Tyszkiewicz, A. Maciaga, I.V. Kityk, E. Gondek, J. Mater. Sci. Mater. Electron. 26, 2733 (2015)CrossRefGoogle Scholar
  5. 5.
    M. Sharma, S.K. Tripathi, J. Mater. Sci. Mater. Electron. 26, 2760 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Ding, X. Liu, R. Guo, J. Cryst. Growth 307, 145 (2007)CrossRefGoogle Scholar
  7. 7.
    S. Wang, A. Pan, H. Yin, Y. He, Y. Lei, Z. Xu, B. Zou, Mater. Lett. 60, 1242 (2006)CrossRefGoogle Scholar
  8. 8.
    Z. Peng, Y. Jiang, Y. Song, C. Wang, H. Zhang, Chem. Mater. 20, 3153 (2008)CrossRefGoogle Scholar
  9. 9.
    X. Duan, J. Ma, Y. Shen, W. Zheng, Inorg. Chem. 51, 914 (2012)CrossRefGoogle Scholar
  10. 10.
    A. Afraz, A.A. Rafati, A. Hajian, J. Solid State Electrochem. 17, 2017 (2013)CrossRefGoogle Scholar
  11. 11.
    A. Afraz, A.A. Rafati, M. Najafi, Mater. Sci. Eng. C 44, 58 (2014)CrossRefGoogle Scholar
  12. 12.
    A.A. Rafati, A. Afraz, A. Hajian, P. Assari, Microchim. Acta 181, 1999 (2014)CrossRefGoogle Scholar
  13. 13.
    A.A. Rafati, A. Afraz, Mater. Sci. Eng. C 39, 105 (2014)CrossRefGoogle Scholar
  14. 14.
    A. Afraz, A.A. Rafati, A. Hajian, M. Khoshnood, Electrocatalysis 6, 220 (2015)CrossRefGoogle Scholar
  15. 15.
    A. Hajian, A.A. Rafati, O. Yurchenko, G. Urban, A. Afraz, M. Najafi, A. Bagheri, J. Electrochem. Soc. 162, B41 (2015)CrossRefGoogle Scholar
  16. 16.
    A. Hajian, A.A. Rafati, A. Afraz, M. Najafi, J. Mol. Liq. 199, 150 (2014)CrossRefGoogle Scholar
  17. 17.
    A. Hajian, A.A. Rafati, A. Afraz, M. Najafi, J. Electrochem. Soc. 161, B196 (2014)CrossRefGoogle Scholar
  18. 18.
    F. Alam, V. Dutta, Energy Procedia 33, 233 (2013)CrossRefGoogle Scholar
  19. 19.
    H. Xin, O.G. Reid, G. Ren, F.S. Kim, D.S. Ginger, S.A. Jenekhe, ACS Nano 4, 1861 (2010)CrossRefGoogle Scholar
  20. 20.
    B.G. Kim, M.S. Kim, J. Kim, ACS Nano 4, 2160 (2010)CrossRefGoogle Scholar
  21. 21.
    T.W.F. Chang, A. Maria, P.W. Cyr, V. Sukhovatkin, L. Levina, E.H. Sargent, Synth. Met. 148, 257 (2005)CrossRefGoogle Scholar
  22. 22.
    W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425 (2002)CrossRefGoogle Scholar
  23. 23.
    A. Patra, Y.H. Wijsboom, G. Leitus, M. Bendikov, Chem. Mater. 23, 896 (2011)CrossRefGoogle Scholar
  24. 24.
    H. Meng, D.F. Perepichka, M. Bendikov, F. Wudl, G.Z. Pan, W. Yu, W. Dong, S. Brown, J. Am. Chem. Soc. 125, 15151 (2003)CrossRefGoogle Scholar
  25. 25.
    X. Yin, F. Wu, N. Fu, J. Han, D. Chen, P. Xu, M. He, Y. Lin, ACS Appl. Mater. Interfaces 5, 8423 (2013)CrossRefGoogle Scholar
  26. 26.
    H.J. Shin, S.S. Jeon, S.S. Im, Synth. Met. 161, 1284 (2011)CrossRefGoogle Scholar
  27. 27.
    J.M. Pringle, V. Armel, D.R. MacFarlane, Chem. Commun. 46, 5367 (2010)CrossRefGoogle Scholar
  28. 28.
    H. Meng, D.F. Perepichka, F. Wudl, Angew. Chem. Int. Ed. 42, 658 (2003)CrossRefGoogle Scholar
  29. 29.
    Y. Ni, H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, Z. Xu, Cryst. Growth Des. 4, 759 (2004)CrossRefGoogle Scholar
  30. 30.
    A. Tursun, A. Ahmat, J. Ruxangul, O. Yakupjan, Z. Yu, Nanoscale Res. Lett. 9, 89 (2014)CrossRefGoogle Scholar
  31. 31.
    Z.L. Wang, J. Phys. Chem. B 104, 1153 (2000)CrossRefGoogle Scholar
  32. 32.
    S.F. Wang, F. Gu, M.K. Lü, D.Z. Wang, Z.S. Yang, H.P. Zhang, Y.Y. Zhou, A.Y. Zhang, Mater. Lett. 60, 2759 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Malek-Ashtar University of TechnologyTehranIran

Personalised recommendations