Stress evolution in AlN and GaN grown on Si(111): experiments and theoretical modeling

  • Yiquan Dai
  • Shuiming Li
  • Hongwei Gao
  • Weihui Wang
  • Qian Sun
  • Qing Peng
  • Chengqun Gui
  • Zhengfang Qian
  • Sheng Liu


We introduce a temperature dependent anisotropic model for the stresses in gallium nitride (GaN) and aluminum nitride (AlN) films grown on Si(111) substrates and their epiwafer bow effects caused by thermal mismatch between the film and substrate. The model is verified by Raman scattering experiments with carefully prepared samples. The stresses analyzed from Raman frequency shifts in experiments show excellent agreement with the stresses from finite element modeling simulations. The interaction force mechanisms and the impact factors are compared. The analysis provides an insight in understanding the defect behaviors in film growth. Our model could be useful in the evaluation of the residual stresses and deformations in film growth control, post thermal process in device manufacture, packaging, and reliability estimation.


Residual Stress Edge Point Gallium Nitride Thick Substrate High Temperature Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by National Hightech Program (863) with contract number of SS2015AA041802. Prof. Qian Sun is also grateful to the financial support from the National Natural Science Foundation of China (Grant Nos. 61534007, 61404156, and 61522407), the National High Technology Research and Development Program of China (863 Program) (Grant No. 2013AA031901), Suzhou Science and Technology Program (Grant No. ZXG2013042), and the Recruitment Program of Global Experts (1000 Youth Talents Plan). Authors are also grateful to the Analytical and Testing Center, Huazhong University of Science and Technology for technical assistance.


  1. 1.
    W.A. Hadi, M.S. Shur, S.K. O’Leary, Steady-state and transient electron transport within the wide energy gap compound semiconductors gallium nitride and zinc oxide: an updated and critical review. J. Mater. Sci. Mater. Electron. 25(11), 4675–4713 (2014)CrossRefGoogle Scholar
  2. 2.
    J.A. del Alamo, J. Joh, GaN HEMT reliability. Microelectron. Reliab. 49(9), 1200–1206 (2009)CrossRefGoogle Scholar
  3. 3.
    C.V. Falub, H. von Känel, F. Isa et al., Scaling hetero-epitaxy from layers to three-dimensional crystals. Science 335(6074), 1330–1334 (2012)CrossRefGoogle Scholar
  4. 4.
    F. Scholz, Semipolar GaN grown on foreign substrates: a review. Semicond. Sci. Technol. 27(2), 024002 (2012)CrossRefGoogle Scholar
  5. 5.
    M. Wei, X. Wang, X. Pan et al., Effect of high temperature AlGaN buffer thickness on GaN Epilayer grown on Si(111) substrates. J. Mater. Sci. Mater. Electron. 22(8), 1028–1032 (2011)CrossRefGoogle Scholar
  6. 6.
    G. Meneghesso, G. Verzellesi, F. Danesin et al., Reliability of GaN high-electron-mobility transistors: state of the art and perspectives. IEEE Trans. Device Mater. Reliab. 8(2), 332–343 (2008)CrossRefGoogle Scholar
  7. 7.
    J.H. Leach, Y. Shishkin, K. Udwary et al., Large-area Bow-free n+ GaN Templates by HVPE for LEDs SPIE OPTO (International Society for Optics and Photonics, 2014), pp. 898602-1–898602-13Google Scholar
  8. 8.
    B. Zhang, Y. Liu, A review of GaN-based optoelectronic devices on silicon substrate. Chin. Sci. Bull. 59(12), 1251–1275 (2014)CrossRefGoogle Scholar
  9. 9.
    H. Hirayama, S. Fujikawa, N. Kamata, Recent progress in AlGaN-Based deep-UV LEDs. Electr. Commun. Jpn. 98(5), 1–8 (2015)CrossRefGoogle Scholar
  10. 10.
    B. Leung, J. Han, Q. Sun, Strain relaxation and dislocation reduction in AlGaN step-graded buffer for crack-free GaN on Si(111). Phys. Status Solidi 11(3–4), 437–441 (2014)CrossRefGoogle Scholar
  11. 11.
    S.A. Campbell, The Science and Engineering of Microelectronic Fabrication, 2nd edn. (Oxford University Press, New York, 1996)Google Scholar
  12. 12.
    L. Wang, C. Xu, W. Zhang et al., Investigation of thermal-mechanical stress and chip-packaging-interaction issues in low-k chips. in 16th International Conference on Electronic Packaging Technology (ICEPT) (2015), IEEE, pp. 627–630Google Scholar
  13. 13.
    W.D. Van Driel, C.A. Yuan, S. Koh et al., LED system reliability. in 12th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), (2011), IEEE, pp. 1–5Google Scholar
  14. 14.
    R.R. Reeber, K. Wang, Thermal expansion and lattice parameters of group IV semiconductors. Mater. Chem. Phys. 46(2), 259–264 (1996)CrossRefGoogle Scholar
  15. 15.
    R.R. Reeber, K. Wang, Lattice parameters and thermal expansion of GaN. J. Mater. Res. 15(01), 40–44 (2000)CrossRefGoogle Scholar
  16. 16.
    G.A. Slack, S.F. Bartram, Thermal expansion of some diamondlike crystals. J. Appl. Phys. 46(1), 89–98 (1975)CrossRefGoogle Scholar
  17. 17.
    R.R. Reeber, K. Wang, High Temperature Elastic Constant Prediction of Some Group III-Nitrides. MRS Internet J. Nitride Semicond. Res. 6, 3 (2001)Google Scholar
  18. 18.
    H. Landolt-Bornstein, in Crystal and Solid State Physics, ed. by K.-H. Hellwege (Springer, Berlin, 1979), p. 116Google Scholar
  19. 19.
    M.D. Kluge, J.R. Ray, A. Rahman, Molecular dynamic calculation of elastic constants of silicon. J. Chem. Phys. 85(7), 4028–4031 (1986)CrossRefGoogle Scholar
  20. 20.
    W.A. Brantley, Calculated elastic constants for stress problems associated with semiconductor devices. J. Appl. Phys. 44(1), 534–535 (1973)CrossRefGoogle Scholar
  21. 21.
    R.J. Bruls, H.T. Hintzen, G. De With et al., The temperature dependence of the Young’s modulus of MgSiN2, AlN and Si3N4. J. Eur. Ceram. Soc. 21(3), 263–268 (2001)CrossRefGoogle Scholar
  22. 22.
    M. Hopcroft, W.D. Nix, T.W. Kenny, What is the Young’s Modulus of Silicon? J. Microelectromech. Syst. 19(2), 229–238 (2010)CrossRefGoogle Scholar
  23. 23.
    M.A. Moram, M.E. Vickers, X-ray diffraction of III-nitrides. Rep. Prog. Phys. 72(3), 036502 (2009)CrossRefGoogle Scholar
  24. 24.
    M. Kuball, Raman spectroscopy of GaN, AlGaN and AlN for process and growth monitoring/control. Surf. Interface Anal. 31(10), 987–999 (2001)CrossRefGoogle Scholar
  25. 25.
    G. Callsen, M.R. Wagner, J.S. Reparaz et al., Phonon pressure coefficients and deformation potentials of wurtzite AlN determined by uniaxial pressure-dependent Raman measurements. Phys. Rev. B 90(20), 205206 (2014)CrossRefGoogle Scholar
  26. 26.
    C.A. Arguello, D.L. Rousseau, S.P.S. Porto, First-order Raman effect in wurtzite-type crystals. Phys. Rev. 181(3), 1351 (1969)CrossRefGoogle Scholar
  27. 27.
    W. Zheng, R. Zheng, F. Huang et al., Raman tensor of AlN bulk single crystal. Photon. Res. 3(2), 38–43 (2015)CrossRefGoogle Scholar
  28. 28.
    D. Zhuang, J.H. Edgar, B. Liu et al., Bulk AlN crystal growth by direct heating of the source using microwaves. J. Cryst. Growth 262(1), 168–174 (2004)CrossRefGoogle Scholar
  29. 29.
    J. Gleize, M.A. Renucci, J. Frandon et al., Phonon deformation potentials of wurtzite AlN. J. Appl. Phys. 93(4), 2065–2068 (2003)CrossRefGoogle Scholar
  30. 30.
    C. Kisielowski, J. Krüger, S. Ruvimov et al., Strain-related phenomena in GaN thin films. Phys. Rev. B 54(24), 17745 (1996)CrossRefGoogle Scholar
  31. 31.
    X.H. Zhang, C.L. Zhao, J.C. Han et al., Observation of symmetrically decay of A1 (longitudinal optical) mode in free-standing GaN bulk single crystal from Li3 N flux method. Appl. Phys. Lett. 102(1), 011916 (2013)CrossRefGoogle Scholar
  32. 32.
    G. Callsen, J.S. Reparaz, M.R. Wagner et al., Phonon deformation potentials in wurtzite GaN and ZnO determined by uniaxial pressure dependent Raman measurements. Appl. Phys. Lett. 98(6), 061906 (2011)CrossRefGoogle Scholar
  33. 33.
    J.Y. Lu, Z.J. Wang, D.M. Deng et al., Determining phonon deformation potentials of hexagonal GaN with stress modulation. J. Appl. Phys. 108(12), 123520 (2010)CrossRefGoogle Scholar
  34. 34.
    W.D. Nix, Mechanical properties of thin films. Metall. Trans. A 20(11), 2217–2245 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanChina
  2. 2.Key Laboratory of Nanodevices and ApplicationsChinese Academy of Sciences (CAS)SuzhouChina
  3. 3.Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO)Chinese Academy of Sciences (CAS)SuzhouChina
  4. 4.School of Power and Mechanical EngineeringWuhan UniversityWuhanChina
  5. 5.Department of Mechanical, Aerospace and Nuclear EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations