Advertisement

Energy dissipation and constitutive modeling for a mechanistic description of pad scratching in chemical–mechanical planarization

  • David C. Ponte
  • D. M. L. MeyerEmail author
Article

Abstract

A thermomechanical model to describe the mechanisms of polishing pad scratching in chemical–mechanical planarization (CMP) has been formulated and investigated. CMP is a necessary process in integrated circuit (IC) fabrication to planarize wafers with nanoscale features after patterned layer deposition. Polishing pad asperities can produce microscale scratches on the wafer surface during CMP, reducing IC manufacturing yields. The constructed thermomechanical model accounts for stresses of the pad and wafer contact and also provides the means to track input energy dissipation during CMP. Tracking energy dissipation offers information about processes that may influence scratch production. This knowledge ultimately produces a greater physical understanding of CMP for the prevention of pad scratching. Polishing pad stress relaxation experiments demonstrate the importance of viscoelastic and plastic strain energy dissipation with its effects on the wafer stress field. Scratch producing ability of the polishing pad is found to decrease with use in CMP, with slurry soaking and increasing polishing time. Mechanical behavior of the polishing pad is demonstrated to differ when in compression and in tension. Compressibility of the pad material is shown to be significant in stress modeling through experimental measurement of polishing pad volume change. Differential scanning calorimetry of used polishing pad samples revealed energy dissipation into the polishing pad surface with increasing polishing time of CMP. Energy dissipation processes influence pad scratching in CMP. Analytical wafer stress field modeling unveils that the scratching ability of a polishing pad decreases when it is less stiff or has a smoother surface.

Keywords

Wafer Surface Plastic Strain Energy Stress Relaxation Experiment Wafer Material Tensile Stress Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. Eusner, N. Saka, J.-H. Chun, J. Electrochem. Soc. 158, H379 (2011)CrossRefGoogle Scholar
  2. 2.
    S. Kim, N. Saka, J.-H. Chun, S.-H. Shin, C.I.R.P. Ann, Manuf. Technol. 62, 307 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Kim, N. Saka, J.-H. Chun, ECS J. Solid State Sci. Technol. 3, P169 (2014)CrossRefGoogle Scholar
  4. 4.
    W.M. Lai, D. Rubin, E. Krempl, Introduction to Continuum Mechanics, 4th edn. (Elsevier, Burlington, 2010), p. 155CrossRefGoogle Scholar
  5. 5.
    A.E. Green, P.M. Naghdi, Arch. Ration. Mech. Anal. 18, 4 (1965)CrossRefGoogle Scholar
  6. 6.
    G.A. Maugin, The Thermomechanics of Plasticity and Fracture, 1st edn. (Cambridge University Press, New York, 1992), p. 38CrossRefGoogle Scholar
  7. 7.
    S. Balakumar, T. Haque, A. Senthil Kumar, M. Rahman, R. Kumar, J. Electrochem. Soc. 152, G867 (2005)CrossRefGoogle Scholar
  8. 8.
    A. Chandra, P. Karra, A.F. Bastawros, R. Biswas, P.J. Sherman, S. Armini, D.A. Lucca, C.I.R.P. Ann, Manuf. Technol. 57, 559 (2008)CrossRefGoogle Scholar
  9. 9.
    I. Li, K. Forsthoefel, K.A. Richardson, Y. Obeng, W. Easter, A. Maury, Mater. Res. Soc. Symp. 613, E7.3.1 (2000)Google Scholar
  10. 10.
    H. Lu, Y. Obeng, K.A. Richardson, Mater. Charact. 49, 177 (2003)CrossRefGoogle Scholar
  11. 11.
    L. Charns, M. Sugiyama, A. Philipossian, Thin Solid Films 485, 188 (2005)CrossRefGoogle Scholar
  12. 12.
    S. Armini, C.M. Whelan, K. Maex, J.L. Hernandez, M. Moinpour, J. Electrochem. Soc. 154, H667 (2007)CrossRefGoogle Scholar
  13. 13.
    K. Dill, S. Bromberg, Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology, 1st edn. (Garland Science, New York, 2003), p. 105Google Scholar
  14. 14.
    G.M. Hamilton, L.E. Goodman, J. Appl. Mech. 33, 371 (1966)CrossRefGoogle Scholar
  15. 15.
    G.M. Hamilton, Proc. Inst. Mech. Eng. C 197, 1 (1983)CrossRefGoogle Scholar
  16. 16.
    W. Li, D. Shin, M. Tomozawa, S. Murarka, Thin Solid Films 270, 601 (1995)CrossRefGoogle Scholar
  17. 17.
    M. Moinpour, A. Tregub, A. Oehler, K. Cadien, MRS Bull. 27, 766 (2002)CrossRefGoogle Scholar
  18. 18.
    D. Castillo-Mejia, S. Gold, V. Burrows, S. Beaudoin, J. Electrochem. Soc. 150, G76 (2003)CrossRefGoogle Scholar
  19. 19.
    B. Kim, M. Tucker, J. Kelchner, S. Beaudoin, I.E.E.E. Trans, Semicond. Manuf. 21, 454 (2008)CrossRefGoogle Scholar
  20. 20.
    J. Shackelford, W. Alexander, Materials Science and Engineering Handbook, 3rd edn. (CRC Press, Boca Raton, 2001), p. 375Google Scholar
  21. 21.
    M.E. Brown, Handbook of Thermal Analysis and Calorimetry Volume 1: Principles and Practice, 1st edn. (Elsevier, Amsterdam, 1998), p. 279Google Scholar
  22. 22.
    E. Kreyszig, Advanced Engineering Mathematics, 10th edn. (Wiley, New York, 2011), p. 827Google Scholar
  23. 23.
    M.S. Anbarasi, S. Ghaayathri, R. Kamaleswari, I. Abirami, Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 2, 1 (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Mechanical EngineeringUniversity of Rhode IslandKingstonUSA

Personalised recommendations