Photoelectrocatalytic degradation of methyl blue using sprayed WO3 thin films

  • Y. M. Hunge
  • M. A. Mahadik
  • V. S. Mohite
  • S. S. Kumbhar
  • N. G. Deshpande
  • K. Y. Rajpure
  • A. V. Moholkar
  • P. S. Patil
  • C. H. Bhosale


WO3 thin films have been deposited using simple chemical spray pyrolysis technique and successfully applied as photoanode for photoelectrocatalytic degradation of methylene blue. The films were deposited on bare glass and fluorine doped tin oxide coated glass substrates to study photoelectrochemical (PEC) properties, crystal structure, surface morphology, chemical composition and optical studies. The PEC results indicate that, the films deposited at 300 °C show the improved the photocurrent response relative to other deposited thin films. The monoclinic crystal structure of WO3 has been confirmed from X-ray diffraction studies. The Raman spectra of optimized films show two strong peaks at 271.34 and 327.27 cm−1 can be assigned to the bending δ (O\W\O) vibrations in the monoclinic WO3 structure. Field emission scanning electron microscopy showed that the film surface constituted of aggregates of very small seed like nanoparticles. UV–vis spectrophotometry shows that the WO3 film deposited at the 300 °C shows a band gap of ~2.66 eV and has emerged as one of the visible light photocatalysts, which can absorb light below 520 nm wavelength. The photocatalytic degradation of methyl blue has been investigated in aqueous solution. The removal of the color and decrease of UV–Visible absorbance was simultaneously able to show the oxidation of methylene blue dye.


Methyl Blue Substrate Temperature Photocatalytic Degradation Methylene Blue Visible Light Irradiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are very much thankful to Department of science and technology (DST), New Delhi for the financial support through the Science and engineering research board (SERB) research project no. SR/S2/CMP-62/2012 and Prof. C. H. Bhosale is thankful to University Grants Commission (UGC), New Delhi, for awarding BSR faculty fellowship award F. No. 18-1/2011/BSR and Dr. N. G. Deshpande is thankful to Department of science and technology (DST) and the Indian National Science Academy for DST INSPIRE Faculty award IFA-13 PH-61/1Aug 2013.


  1. 1.
    M. Hepel, S. Hazelton, Photoelectrocatalytic degradation of diazo dyes on nanostructured WO3 electrodes. Electrochim. Acta 50, 5278–5291 (2005)CrossRefGoogle Scholar
  2. 2.
    S. Joseph, B. Mathew, Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. J. Mol. Liq. 204, 184–191 (2015)CrossRefGoogle Scholar
  3. 3.
    F. Bouaziz, M. Koubaa, F. Kallel, F. Chaari, D. Driss, R.E. Ghorbel, S.E. Chaabouni, Efficiency of almond gum as a low-cost adsorbent for methylene blue dye removal from aqueous solutions. Ind. Crop. Prod. 74, 903–911 (2015)CrossRefGoogle Scholar
  4. 4.
    M.A. Mahadik, S.S. Shinde, V.S. Mohite, S.S. Kumbhar, A.V. Moholkar, K.Y. Rajpure, V. Ganesan, J. Nayak, S.R. Barman, C.H. Bhosale, Visible light catalysis of rhodamine B using nanostructured Fe2O3, TiO2 and TiO2/Fe2O3 thin films. J. Photochem. Photobiol. B 133, 90–98 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films. Chem. Mater. 14, 2812–2816 (2002)CrossRefGoogle Scholar
  6. 6.
    Y. Zhao, X. Wei, Y. Wang, F. Luo, One-pot twelve tungsten phosphate acid assisted electrochemical synthesis of WO3 decorated graphene sheets for high—efficiency UV-light-driven photocatalysis. Chem. Phys. Lett. 607, 34–38 (2014)CrossRefGoogle Scholar
  7. 7.
    S.B. Sadale, S.M. Chaqour, O. Gorochov, M. Neumann-Spallart, Photoelectrochemical and physical properties of tungsten trioxide films obtained by aerosol pyrolysis. Mater. Rese. Bull. 43, 1472–1479 (2008)CrossRefGoogle Scholar
  8. 8.
    J. Luo, J. Yartym, M. Hepel, Photoelectrochemical degradation of orange II textile dye on nanostructured WO3 film electrodes. J. New Mat. Elect. Syst. 5, 315–321 (2002)Google Scholar
  9. 9.
    C. Yang, Q. Zhu, S. Zhang, Z. Zou, K. Tian, C. Xie, A comparative study of microstructures on the photoelectric properties of tungsten trioxide films with plate-like arrays. Appl. Surf. Sci. 297, 116–124 (2014)CrossRefGoogle Scholar
  10. 10.
    Z.S. Houweling, J.W. Geus, R.E.I. Schropp, Hot-wire chemical vapor deposition of WO3-x thin films of various oxygen contents. Mater. Chem. Phys. 140, 89–96 (2013)CrossRefGoogle Scholar
  11. 11.
    Y.S. Zou, Y.C. Zhang, D. Lou, H.P. Wang, L. Gu, Y.H. Dong, K. Dou, X.F. Song, H.B. Zeng, Structural and optical properties of WO3 films deposited by pulsed laser deposition. J. Alloy. Compd. 583, 465–470 (2014)CrossRefGoogle Scholar
  12. 12.
    N. Van Hieu, H. Van Vuong, N. Van Duy, N.D. Hoa, A morphological control of tungsten oxide nanowires by thermal evaporation method forsub-ppm NO2 gas sensor application. Sensor Actuators B 171–172, 760–768 (2012)CrossRefGoogle Scholar
  13. 13.
    Y.M. Hunge, V.S. Mohite, S.S. Kumbhar, K.Y. Rajpure, A.V. Moholkar, C.H. Bhosale, Photoelectrocatalytic degradation of methyl red using sprayed WO3 thin films under visible light irradiation. J. Sci. Mater. Electron (2015). doi: 10.1007/s10854-015-3508-z Google Scholar
  14. 14.
    V.S. Vidyarthi, M. Hofmann, A. Savan, K. Sliozberg, D. Konig, R. Beranek, W. Schuhmann, A. Ludwig, Enhanced photoelectrochemical properties of WO3 thin films fabricated by reactive magnetron sputtering Int. J. Hydrog. Energy 36, 4724–4731 (2011)CrossRefGoogle Scholar
  15. 15.
    L.M. Bertus, A. Duta, Synthesis of WO3 thin films by surfactant mediated spray pyrolysis. Ceram. Int. 38, 2873–2882 (2012)CrossRefGoogle Scholar
  16. 16.
    C. Rohit Saraf, Sukanti Behera Shivakumara, H. Nagabhushana, N. Dhananjaya, Facile synthesis of PbWO4: Applications in photoluminescence and photocatalytic degradation of organic dyes under visible light. Spectrochimica. Acta. A 136, 348–355 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Fujii, Z. Meng, C. Yogi, T. Hashishin, T. Sanada, K. Kojima, Preparation of Pt-loaded WO3 with different types of morphology and photocatalytic degradation of methylene blue. Surf. Coat. Tech. 271, 251–258 (2015)CrossRefGoogle Scholar
  18. 18.
    M. Aslam, Iqbal M.I. Ismail, S. Chandrasekaran, A. Hameed, Morphology controlled bulk synthesis of disc-shaped WO3 powder and evaluation of its photocatalytic activity for the degradation of phenols. J. Hazard. Mater. 276, 120–128 (2014)CrossRefGoogle Scholar
  19. 19.
    Y. Keereeta, S. Thongtem, T. Thongtem, Enhanced photocatalytic degradation of methylene blue by WO3/ZnWO3 composites synthesized by a combination of microwave—solvothermal method and incipient wetness procedure. Powder Technol. 284, 85–94 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Khaksar, D.M. Boghaei, M. Amini, Synthesis, structural characterization and reactivity of manganese tungstate nanoparticles in the oxidative degradation of methylene blue. C. R. Chimie 18, 199–203 (2015)CrossRefGoogle Scholar
  21. 21.
    Y.M. Hunge, M.A. Mahadik, S.S. Kumbhar, V.S. Mohite, K.Y. Rajpure, N.G. Deshpande, A.V. Moholkar, C.H. Bhosale, Visible light catalysis of methyl orange using nanostructured WO3 thin films. Ceram. Int. (2015). doi: 10.1016/j.ceramint.2015.08.178 Google Scholar
  22. 22.
    S.M. Pawar, A.V. Moholkar, K.Y. Rajpure, C.H. Bhosale, Electrosynthesis and characterization of CdSe thin films, Optimization of preparative parameters by photoelectrochemical technique. J. Phys. Chem. Solids 206, 2386–2391 (2006)CrossRefGoogle Scholar
  23. 23.
    S.S. Shinde, P.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Zinc oxide mediated heterogeneous photocatalytic degradation of organic species under solar radiation. J. Photochem. Photobiol. B 104, 425–433 (2011)CrossRefGoogle Scholar
  24. 24.
    V.M. Nikale, U.B. Suryavanshi, C.H. Bhosale, Effect of substrate temperature on spray deposited CdIn2Se4 thin films. Mater. Sci. Eng. B 134, 94–98 (2006)CrossRefGoogle Scholar
  25. 25.
    M. Rodríguez-Pérez, C. Chacón, E. Palacios-González, G. Rodríguez-Gattorno, G. Oskam, Photoelectrochemical water oxidation at electrophoretically deposited WO3 films as a function of crystal structure and morphology. Electrochemi. Acta. 140, 320–331 (2014)CrossRefGoogle Scholar
  26. 26.
    V.M. Nikale, N.S. Gaikwad, K.Y. Rajpure, C.H. Bhosale, Structural and optical properties of spray-deposited CdIn2Se4 thin films. Mater. Chem. Phys. 78, 363–366 (2002)CrossRefGoogle Scholar
  27. 27.
    M.A. Mahadik, S.S. Shinde, Y.M. Hunge, V.S. Mohite, S.S. Kumbhar, A.V. Moholkar, K.Y. Rajpure, C.H. Bhosale, UV assisted photoelectrocatalytic oxidation of phthalic acid using spray deposited Al doped zinc oxide thin films. J. Alloy. Compound. 611, 446–451 (2014)CrossRefGoogle Scholar
  28. 28.
    B. Grbić, N. Radić, S. Stojadinović, R. VasilićZorana Dohčević-Mitrović, Zoran Šaponjić, Plamen Stefanov, TiO2/WO3 photocatalytic composite coatings prepared by spray pyrolysis. Surf. Coat. Tech. 258, 763–771 (2014)CrossRefGoogle Scholar
  29. 29.
    A. Takase, K. Miyakawa, Raman study on sol–gel derived tungsten oxides from tungsten ethoxide. Jpn. J. Appl. Phys. 30, L1508–L1511 (1991)CrossRefGoogle Scholar
  30. 30.
    W.J. Lee, P.S. Shinde, G.H. Go, C.H. Doh, Enhanced photoelectrochemical performance of WO3/Ti photoanode due to in situ formation of a thin interfacial composite layer. Appl. Surf. Sci. 270, 267–271 (2013)CrossRefGoogle Scholar
  31. 31.
    A. Enesca, A. Duta, Tailoring WO3 thin layers using spray pyrolysis technique. Phys. Stat. Sol. 11, 3499–3502 (2008)CrossRefGoogle Scholar
  32. 32.
    A.S. Garde, Electrical and structural properties of WO3-SnO2 thick-film resistors prepared by screen printing technique. Res. J. Recent Sci. 4(1), 55–61 (2015)Google Scholar
  33. 33.
    M.F. Daniel, B. Desbat, J.C. Lassegues, Infrared and raman study of WO3 Tungsten trioxides and WO3, xH2O tungsten trioxide hydrates. J. Solid State Chem. 67, 235–247 (1987)CrossRefGoogle Scholar
  34. 34.
    A. Memar, C.M. Phan, M.O Tade, Controlling particle size and photoelectrochemical properties of nanostructured WO3 with surfactants. Appl. Surf. Sci. 305, 760–767 (2014)CrossRefGoogle Scholar
  35. 35.
    M.A. Mahadik, S.S. Shinde, H.M. Pathan, K.Y. Rajpure, C.H. Bhosale, Oxidative degradation of industrial wastewater using spray deposited TiO2/Au:Fe2O3 bilayered thin films. J. Photoch. Photobio. B 141, 315–324 (2014)CrossRefGoogle Scholar
  36. 36.
    V.S. Mohite, M.A. Mahadik, S.S. Kumbhar, Y.M. Hunge, J.H. Kim, A.V. Moholkar, K.Y. Rajpure, C.H. Bhosale, Photoelectrocatalytic degradation of benzoic acid using Au doped TiO2 thin films. J. Photoch. Photobio. B 142, 204–211 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Y. M. Hunge
    • 1
  • M. A. Mahadik
    • 1
  • V. S. Mohite
    • 1
  • S. S. Kumbhar
    • 1
  • N. G. Deshpande
    • 2
  • K. Y. Rajpure
    • 1
  • A. V. Moholkar
    • 1
  • P. S. Patil
    • 3
  • C. H. Bhosale
    • 1
  1. 1.Electrochemical Materials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia
  2. 2.q-Spin Tech and Nanomaterial Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia
  3. 3.Thin Film Materials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia

Personalised recommendations