Lithium cobalt oxide crystallization on flexible polyimide substrate

  • J. F. Ribeiro
  • R. Sousa
  • E. M. F. Vieira
  • A. G. Rolo
  • M. M. Silva
  • L. Dupont
  • J. H. Correia
  • L. M. Goncalves
Article

Abstract

This work reports the fabrication and characterization of lithium cobalt oxide films (LiCoO2) on flexible Kapton® substrate. LiCoO2 is commonly used as cathode of lithium microbatteries but needs an annealing of 700 °C, which is not compatible with most flexible substrates. LiCoO2 films were deposited by reactive RF sputtering followed by an annealing process at 400 °C for 1 h in vacuum and air atmospheres both in silicon and Kapton® substrates. Raman spectroscopy, X-ray diffraction patterns and scanning electron microscopy images were used to evaluate samples crystallinity and morphology. Films fabricated in Kapton® and silicon substrates were compared.

References

  1. 1.
    R. Van Noorden, The rechargeable revolution: a better battery. Nature 507(7490), 26–28 (2014)CrossRefGoogle Scholar
  2. 2.
    J.P. Maranchi, A.F. Hepp, P.N. Kumta, LiCoO2 and SnO2 thin film electrodes for lithium-ion battery applications. Mater. Sci. Eng. B 116(3), 327–340 (2005)CrossRefGoogle Scholar
  3. 3.
    R. Hahn, K. Höppner, M. Ferch, K. Marquardt, P. K. Lang, Integrated lithium micro batteries for highly miniaturized sensors, in Energy self-sufficient Sensors, 2014 7th GMM-Workshop, pp. 33–38 (2014)Google Scholar
  4. 4.
    N.J. Dudney, Solid-state thin-film rechargeable batteries. Mater. Sci. Eng. B 116(3), 245–249 (2005)CrossRefGoogle Scholar
  5. 5.
    M. Armand, J.-M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008)CrossRefGoogle Scholar
  6. 6.
    A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005)CrossRefGoogle Scholar
  7. 7.
    J.B. Bates, N.J. Dudney, B.J. Neudecker, F.X. Hart, H.P. Jun, S.A. Hackney, Preferred orientation of polycrystalline LiCoO2 films. J. Electrochem. Soc. 147(1), 59 (2000)CrossRefGoogle Scholar
  8. 8.
    B. Fleutot, B. Pecquenard, F. Le Cras, B. Delis, H. Martinez, L. Dupont, D. Guy-Bouyssou, Characterization of all-solid-state Li/LiPONB/TiOS microbatteries produced at the pilot scale. J. Power Sources 196(23), 10289–10296 (2011)CrossRefGoogle Scholar
  9. 9.
    J.F. Ribeiro, R. Sousa, M.F. Silva, L.M. Goncalves, M.M. Silva, J.H. Correia, Thin-film materials for solid-state rechargeable lithium batteries. ECS Trans. 45(29), 139–142 (2013)CrossRefGoogle Scholar
  10. 10.
    G. Zhou, F. Li, H.-M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7(4), 1307 (2014)CrossRefGoogle Scholar
  11. 11.
    H. Gwon, J. Hong, H. Kim, D.-H. Seo, S. Jeon, K. Kang, Recent progress on flexible lithium rechargeable batteries. Energy Environ. Sci. 7(2), 538 (2014)CrossRefGoogle Scholar
  12. 12.
    F.C. Krebs, Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium-tin-oxide. Sol. Energy Mater. Sol. Cells 93(9), 1636–1641 (2009)CrossRefGoogle Scholar
  13. 13.
    L. Francioso, C. De Pascali, I. Farella, C. Martucci, P. Cretì, P. Siciliano, A. Perrone, Flexible thermoelectric generator for ambient assisted living wearable biometric sensors. J. Power Sources 196(6), 3239–3243 (2011)CrossRefGoogle Scholar
  14. 14.
    L.M. Goncalves, P. Alpuim, G. Min, D.M. Rowe, C. Couto, J.H. Correia, Optimization of Bi2Te3 and Sb2Te3 thin films deposited by co-evaporation on polyimide for thermoelectric applications. Vacuum 82(12), 1499–1502 (2008)CrossRefGoogle Scholar
  15. 15.
    M. Inaba, Y. Iriyama, Z. Ogumi, Y. Todzuka, A. Tasaka, Raman study of layered rock-salt LiCoO2 and its electrochemical lithium deintercalation. J. Raman Spectrosc. 28(8), 613–617 (1997)CrossRefGoogle Scholar
  16. 16.
    C.-L. Liao, K.-Z. Fung, Lithium cobalt oxide cathode film prepared by rf sputtering. J. Power Sources 128(2), 263–269 (2004)CrossRefGoogle Scholar
  17. 17.
    P. J. Kumar, K. J. Babu, O. M. Hussain, A. B. Garg, R. Mittal, R. Mukhopadhyay, HT-LiCoO2 thin film positive electrodes prepared by RF magnetron sputtering, in AIP Conference Proceedings 1349, vol. 381, pp. 381–382 (2011)Google Scholar
  18. 18.
    H. Pan, Y. Yang, Effects of radio-frequency sputtering powers on the microstructures and electrochemical properties of LiCoO2 thin film electrodes. J. Power Sources 189(1), 633–637 (2009)CrossRefGoogle Scholar
  19. 19.
    R. Kohler, J. Proell, S. Ulrich, V. Trouillet, S. Indris, M. Przybylski, W. Pfleging, Laser-assisted structuring and modification of LiCoO2 thin films,” in SPIE, vol. 7202, pp. 720207–720207-11 (2009)Google Scholar
  20. 20.
    T. Tsuruhama, T. Hitosugi, H. Oki, Y. Hirose, T. Hasegawa, Preparation of layered-rhombohedral LiCoO2 epitaxial thin films using pulsed laser deposition. Appl. Phys. Express 2, 085502 (2009)CrossRefGoogle Scholar
  21. 21.
    I. Lorite, J.J. Romero, J.F. Fernández, Effects of the agglomeration state on the Raman properties of Co3O4 nanoparticles. J. Raman Spectrosc. 43(10), 1443–1448 (2012)CrossRefGoogle Scholar
  22. 22.
    P.J. Kumar, K.J. Babu, O.M. Hussain, RF magnetron sputter deposited nanocrystalline LiCoO2 film cathodes on flexible substrates. Adv. Sci. Eng. Med. 4(3), 190–199 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Algoritmi CenterUniversity of MinhoGuimaraesPortugal
  2. 2.DEIUniversity of MinhoGuimaraesPortugal
  3. 3.CMEMS UMINHOUniversity of MinhoGuimaraesPortugal
  4. 4.Physics Center and Physics DepartmentUniversity of MinhoBragaPortugal
  5. 5.Chemistry CenterUniversity of MinhoBragaPortugal
  6. 6.LRCS, UMR CNRS 7314Université de Picardie Jules VerneAmiensFrance

Personalised recommendations