Influence of latent heat released from solder joints on the reflow temperature profile

  • K. Dušek
  • A. Rudajevová
  • M. Plaček


The reflow process of SAC305 solder paste was investigated by differential scanning calorimetry (DSC) and measurement of the temperature profiles in a real continual convection reflow furnace. Melting and solidification processes of two solder joints were investigated by both methods to determine the influence of latent heat on the surrounding temperature. While one peak was present during melting in DSC, two peaks were present during solidification of two joints connected by a resistor. The released latent heat from one joint increased the temperature of the surroundings and delayed the solidification process of the second joint. Analysis of the temperature profiles obtained during the reflow processes in a real furnace shows that latent heat influences the surrounding temperature not only during the phase transformation, but also during the whole following passage of the sample in the furnace. The maximum temperature increase of the joint is substantial: 25 mg of the solder paste increases the joint temperature by about 15 °C. When two joints are placed on the sample the temperature increase is close to 20 °C.


Differential Scanning Calorimetry Latent Heat Solder Joint Print Circuit Board Solder Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Grant Agency of the Czech Technical University in Prague, Grant No. SGS15/196/OHK3/3T/13. Experiments have been performed in the Magnetism and Low Temperature Laboratories ( within the program of the Czech Research Infrastructures (LM 2011025).


  1. 1.
    I.K. Huit, B. Ralph, Int. J. Mach. Tools Manuf 35, 1251 (1995)CrossRefGoogle Scholar
  2. 2.
    H. T. Ming, T. K. Ming, L. Khor, in Electron. Manuf. Technol. Symp. IEMT 2010 34th IEEECPMT Int. (2010), pp. 1–5Google Scholar
  3. 3.
    S. Belyakov, H.V. Atkinson, S.P.A. Gill, J. Electron. Mater. 39, 1295 (2010)CrossRefGoogle Scholar
  4. 4.
    T. Kim, J. Lee, Y. Kim, J.-M. Kim, Z. Yuan, Mater. Trans. 50, 2695 (2009)CrossRefGoogle Scholar
  5. 5.
    K.N. Prabhu, G. Kumar, J. Electron. Packag. 132, 041001 (2010)CrossRefGoogle Scholar
  6. 6.
    X. Li, F. Zhang, F. Zu, X. Lv, Z. Zhao, D. Yang, J. Alloys Compd. 505, 472 (2010)CrossRefGoogle Scholar
  7. 7.
    N.-C. Lee, in Electron. Packag. Technol. Conf. 2009 EPTC 09 11th (2009), pp. 76–81Google Scholar
  8. 8.
    D.-X. Xu, Y.-P. Lei, Z.-D. Xia, F. Guo, Y.-W. Shi, J. Electron. Mater. 37, 125 (2007)CrossRefGoogle Scholar
  9. 9.
    K.-S. Kim, M. Haga, K. Suganuma, J. Electron. Mater. 32, 1483 (2003)CrossRefGoogle Scholar
  10. 10.
    E. Chason, N. Jadhav, F. Pei, E. Buchovecky, A. Bower, Prog. Surf. Sci. 88, 103 (2013)CrossRefGoogle Scholar
  11. 11.
    A. Baated, K.-S. Kim, K. Suganuma, S. Huang, B. Jurcik, S. Nozawa, M. Ueshima, J. Mater. Sci.: Mater. Electron. 21, 1066 (2010)Google Scholar
  12. 12.
    D.R. Frear, S.N. Burchett, H.S. Morgan, Mechanics of Solder Alloy Interconnects (Springer, Berlin, 1994)Google Scholar
  13. 13.
    W.-L. Chen, C.-Y. Yu, C.-Y. Ho, J.-G. Duh, Mater. Sci. Eng., A 613, 193 (2014)CrossRefGoogle Scholar
  14. 14.
    D. Mu, J. Read, Y. Yang, K. Nogita, J. Mater. Res. 26, 2660 (2011)CrossRefGoogle Scholar
  15. 15.
    L. Livovsky, A. Pietrikova, J. Durisin, in 31st Int. Spring Semin. Electron. Technol. 2008 ISSE 08 (2008), pp. 667–669Google Scholar
  16. 16.
    B. Salam, C. Virseda, H. Da, N.N. Ekere, R. Durairaj, Solder. Surf. Mt. Technol. 16, 27 (2004)CrossRefGoogle Scholar
  17. 17.
    P. Schnederle, M. Adamek, I. Szendiuch, in 2012 35th Int. Spring Semin. Electron. Technol. ISSE (2012), pp. 201–206Google Scholar
  18. 18.
    K. Dusek, J. Vavra, A. Rudajevova, in 2013 36th Int. Spring Semin. Electron. Technol. ISSE (2013), pp. 136–139Google Scholar
  19. 19.
    A. Pietrikova, L. Livovsky, J. Urbancik, R. Bucko, in 29th Int. Spring Semin. Electron. Technol. 2006 ISSE 06 (2006), pp. 459–464Google Scholar
  20. 20.
    B. Illes, O. Krammer, G. Harsanyi, Z. Illyefalvi-Vitez, in 29th Int. Spring Semin. Electron. Technol. 2006 ISSE 06 (2006), pp. 80–85Google Scholar
  21. 21.
    T.-N. Tsai, Appl. Soft Comput. 12, 2601 (2012)CrossRefGoogle Scholar
  22. 22.
    JinGang Gao, Wu YiPing, Han Ding, Solder. Surf. Mt. Technol. 19, 28 (2007)CrossRefGoogle Scholar
  23. 23.
    F. Ochoa, J.J. Williams, N. Chawla, JOM 55, 56 (2003)CrossRefGoogle Scholar
  24. 24.
    Y.-S. Kim, K.-S. Kim, C.-W. Hwang, K. Suganuma, J. Alloys Compd. 352, 237 (2003)CrossRefGoogle Scholar
  25. 25.
    T. Garami, N. Reti, O. Krammer, in Proc. 2014 37th Int. Spring Semin. Electron. Technol. ISSE (2014), pp. 402–406Google Scholar
  26. 26.
    A. Rudajevová, K. Dušek, J. Electron. Mater. 43, 2479 (2014)CrossRefGoogle Scholar
  27. 27.
    J.-C. Zhao, Methods for Phase Diagram Determination (Elsevier, Amsterdam, 2011)Google Scholar
  28. 28.
    N. Mookam, K. Kanlayasiri, J. Mater. Sci. Technol. 28, 53 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Electrotechnology, Faculty of Electrical EngineeringCzech Technical University in PraguePrague 6Czech Republic
  2. 2.Department of Condensed Matter Physics, Faculty of Mathematics and PhysicsCharles UniversityPrague 2Czech Republic

Personalised recommendations