Advertisement

Enhancement of energy-storage properties of K0.5Na0.5NbO3 modified Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 lead-free ceramics

  • Jiefeng Zhao
  • Minghe CaoEmail author
  • Zhijian Wang
  • Qi Xu
  • Lin Zhang
  • Zhonghua Yao
  • Hua Hao
  • Hanxing Liu
Article

Abstract

A lead-free ceramics (1 − x)(0.84Na0.5Bi0.5TiO3–0.16K0.5Bi0.5TiO3)–xK0.5Na0.5NbO3 (x = 0, 0.03, 0.06, 0.09, 0.12, 0.15) for energy-storage application have been fabricated by conventional solid state method. All compositions were crystallized into perovskite solid solution structure ascertained by XRD. SEM micrograph revealed that homogeneous grain could be obtained by addition of appropriate K0.5Na0.5NbO3 (KNN). The depolarization temperature (Td) decreased significantly from 140 to 70 °C, while the maximum dielectric constant temperature (Tm) reduced slightly with increasing KNN. And the addition of KNN improved the energy-storage properties significantly by weakening the ferroelectricity of Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 (NBT–KBT) ceramics. When x = 0.09, the highest energy-storage density (W = 1.51 J/cm3) and energy efficiency (η = 65.0 %) were obtained at room temperature. Besides, the temperature stability of energy-storage density could satisfy ΔW/W100°C ≤ ±20 % when the addition of KNN was over 0.09 from 20 to 150 °C.

Keywords

Morphotropic Phase Boundary Remanent Polarization Depolarization Temperature Conventional Solid State Method Breakdown Field Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by Natural Science Foundation of China (Nos. 51372191, 51102189), International Science and Technology Cooperation Program of China (2011DFA52680), the program for New Century Excellent Talents in University (No. NCET-11-0685), the Key program of Natural Science Foundation of China (No. 50932004) and the Fundamental Research Funds for the Central Universities (WUT: 2014-IV-134).

References

  1. 1.
    C. Kittel, Theory of antiferroelectric crystals. J. Phys. Rev. 82, 729–732 (1951)CrossRefGoogle Scholar
  2. 2.
    J. Hao, B. Shen et al., J. Ceram. Int. 28, 9–12 (2012)Google Scholar
  3. 3.
    R. Skulski, D. Bochenek et al., Int. J. Appl. Ceram. Technol. 10, 330–338 (2013)CrossRefGoogle Scholar
  4. 4.
    Y. Feng, X. Zhuo et al., J. Ceram. Int. 30, 1393–1396 (2004)CrossRefGoogle Scholar
  5. 5.
    S. Jiang, L. Zhang, G. Zhang et al., J. Ceram. Int. 39, 5571–5575 (2013)CrossRefGoogle Scholar
  6. 6.
    G.A. Smolenskii, V.A. Isupv, Sov. Phys. Solid. St. 2, 2651–2654 (1961)Google Scholar
  7. 7.
    C. Ma, X. Tan et al., J. Appl. Phys. 108, 104105 (2010)CrossRefGoogle Scholar
  8. 8.
    X.X. Wang, X.G. Tang et al., J. Appl. Phys. Lett. 85, 91–93 (2004)CrossRefGoogle Scholar
  9. 9.
    D.M. Lin, K.W. Kwok, J. Am. Ceram. Soc. 93, 806–813 (2010)CrossRefGoogle Scholar
  10. 10.
    D. Lin, Q. Zheng, J. Phys. Status A. 209, 505–511 (2012)CrossRefGoogle Scholar
  11. 11.
    C. Ma, X. Tan et al., J. Appl. Phys. 107, 124108 (2010)CrossRefGoogle Scholar
  12. 12.
    Y. Yongjian, R.N. Singh, J. Appl. Phys. 94, 7250 (2003)CrossRefGoogle Scholar
  13. 13.
    S.T. Zhang, A.B. Kounga et al., J. Appl. Phys. 103, 034107 (2008)CrossRefGoogle Scholar
  14. 14.
    S.T. Zhang, A.B. Kounga et al., J. Appl. Phys. 103, 034108 (2008)CrossRefGoogle Scholar
  15. 15.
    S.T. Zhang, A.B. Kounga et al., Adv. Mater. 46, 4716–4720 (2009)Google Scholar
  16. 16.
    F. Gao, X. Dong et al., J. Am. Ceram. Soc. 10, 4382–4386 (2011)CrossRefGoogle Scholar
  17. 17.
    T.P.S. Klaus, J. Wook, J. Am. Ceram. Soc. 93, 1392–1396 (2010)Google Scholar
  18. 18.
    H. Wang, R. Zuo et al., J. Mater. Sci.: Mater. Electron. 45, 3677–3682 (2010)CrossRefGoogle Scholar
  19. 19.
    Y. Li, W. Chen et al., J. Ceram. Int. 31, 139–142 (2005)CrossRefGoogle Scholar
  20. 20.
    F. Gao, X. Dong et al., J. Am. Ceram. Soc. 94, 4162–4164 (2011)CrossRefGoogle Scholar
  21. 21.
    Y. Li, W. Chen et al., J. Mater. Sci. 40, 3625–3628 (2005)CrossRefGoogle Scholar
  22. 22.
    R. Dittmer, E.-M. Anton, J. Am. Ceram. Soc. 95, 3519–3524 (2012)CrossRefGoogle Scholar
  23. 23.
    A. Singh, R. Chatterjee, J. Appl. Phys. 109, 024105 (2011)CrossRefGoogle Scholar
  24. 24.
    J. Ding, Y. Liu et al., J. Mater. Lett. 114, 107–110 (2014)CrossRefGoogle Scholar
  25. 25.
    N.H. Fletcher, A.D. Hilton et al., J. Appl. Phys. 29, 253–258 (1996)Google Scholar
  26. 26.
    G.R. Love, J. Am. Ceram. Soc. 73, 323–328 (1990)CrossRefGoogle Scholar
  27. 27.
    J. Ye, Y. Liu, J. Mater. Sci.: Mater. Electron. 25, 4632–4637 (2014)Google Scholar
  28. 28.
    L. Luo, B. Wang, J. Mater. Sci. 49, 1659–1665 (2014)CrossRefGoogle Scholar
  29. 29.
    Q. Xu, T. Li et al., J. Eur. Ceram. Soc. 35, 545–553 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jiefeng Zhao
    • 1
  • Minghe Cao
    • 1
    Email author
  • Zhijian Wang
    • 1
  • Qi Xu
    • 1
  • Lin Zhang
    • 1
  • Zhonghua Yao
    • 1
  • Hua Hao
    • 1
  • Hanxing Liu
    • 1
  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations