Advertisement

Dysprosium doped di-calcium magnesium di-silicate white light emitting phosphor by solid state reaction method

  • Ishwar Prasad SahuEmail author
  • D. P. Bisen
  • Nameeta Brahme
  • Raunak Kumar Tamrakar
  • Ravi Shrivastava
Article

Abstract

In this paper, we report the dysprosium doped di-calcium magnesium di-silicate namely Ca2MgSi2O7:xDy3+ (x = 1.0, 1.5, 2.0, 2.5 and 3.0 mol%) phosphors were prepared by traditional high temperature solid state reaction method. Phosphors with optimum photo-luminescence intensity [Ca2MgSi2O7:Dy3+ (2 %)] were characterized by X-ray diffraction (XRD) technique. The crystal structure of sintered phosphors were an akermanite type which belongs to the tetragonal crystallography with space group \( {\text{P}}\overline{ 4 2}_{1} {\text{m}} \). The chemical composition of the sintered phosphor Ca2MgSi2O7:Dy3+ (2 %) was confirmed by the energy dispersive X-ray spectroscopy (EDS). Under the ultraviolet excitation, the emission spectra of Ca2MgSi2O7:xDy3+ (x = 1.0, 1.5, 2.0, 2.5 and 3.0 mol%) phosphors were composed of broad band with the characteristic emission of Dy3+ ions are peaking at 475 nm (blue), 577 nm (yellow) and 678 nm (red), originating from the transitions of 4F9/2 → 6Hj state (where j = 15/2, 13/2, 11/2). The combination of these three emissions constituted white light as indicated on the Commission Internationale de l’Eclairage chromaticity diagram. The possible mechanism of the prepared white light emitting Ca2MgSi2O7:xDy3+ (x = 1.0, 1.5, 2.0, 2.5 and 3.0 mol%) phosphors were also investigated. Investigation on decay property show that phosphor held fast and slow decay process. The peak of mechanoluminescence (ML) intensity increases linearly with increasing impact velocity of the moving piston, which suggests that this phosphor can be used as sensors to detect the stress of an object. Thus the present investigation indicates that piezo-electricity is responsible to produce ML in prepared phosphors.

Keywords

Impact Velocity Dysprosium Trap Depth Glow Peak Correlate Color Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

“We are very grateful to UGC-DAE Consortium for Scientific Research, Indore (M.P.) for the XRD Characterization and we are very thankful Dr. Mukul Gupta for his co-operation”. We are very thankful to Dr. K.V.R. Murthy, Department of Applied physics, M.S. University Baroda, Vadodara (Gujarat) India for the photoluminescence study.

References

  1. 1.
    H. Wu, Y. Hu, Y. Wang, C. Fu, J. Alloys Compd. 497, 330–335 (2010)CrossRefGoogle Scholar
  2. 2.
    Y. Chen, B. Liu, M. Kirm, Z. Qi, C. Shi, M. True, S. Vielhauer, G. Zimmerer, J. Lumin. 118, 70–78 (2006)CrossRefGoogle Scholar
  3. 3.
    Y. Xu, D. Chen, Ceram. Int. 34, 2117–2120 (2008)CrossRefGoogle Scholar
  4. 4.
    W. Pan, G. Ning, X. Zhang, J. Wang, Y. Lin, J. Ye, J. Lumin. 128, 1975–1979 (2008)CrossRefGoogle Scholar
  5. 5.
    I.P. Sahu, D.P. Bisen, N. Brahme, R.K. Tamrakar, R. Shrivastava, Res. Chem. Intermed. (2015). doi: 10.1007/s11164-015-2120-4 Google Scholar
  6. 6.
    Y. Gong, Y. Wang, Z. Jiang, X. Xu, Y. Li, Mater. Res. Bull. 44, 1916–1919 (2009)CrossRefGoogle Scholar
  7. 7.
    I.P. Sahu, J. Mater. Sci.: Mater. Electron. (2015). doi: 10.1007/s10854-015-3327-2 Google Scholar
  8. 8.
    B. Liu, C. Shi, M. Yin, L. Dong, Z. Xiao, J. Alloys Compd. 387, 65–69 (2005)CrossRefGoogle Scholar
  9. 9.
    C. Fu, Y. Hu, Y. Wang, H. Wu, X. Wang, J. Alloys Compd. 502, 423–428 (2010)CrossRefGoogle Scholar
  10. 10.
    V.C. Teixeira, P.J.R. Montes, M.E.G. Valerio, Opt. Mater. 36, 1580–1590 (2014)CrossRefGoogle Scholar
  11. 11.
    Y. Ding, Y. Zhang, Z. Wang, W. Li, D. Mao, H. Han, C. Chang, J. Lumin. 129, 294–299 (2009)CrossRefGoogle Scholar
  12. 12.
    M.A. Tshabalalaa, F.B. Dejene, S.S. Pitale, H.C. Swart, O.M. Ntwaeaborwa, Phys. B 439, 126–129 (2014)CrossRefGoogle Scholar
  13. 13.
    S.K. Gupta, M. Kumar, V. Natarajan, S.V. Godbole, Opt. Mater. 35, 2320–2328 (2013)CrossRefGoogle Scholar
  14. 14.
    C.N. Xu, H. Yamada, X. Wang, X.G. Zheng, Appl. Phys. Lett. 84, 3040–3042 (2004)CrossRefGoogle Scholar
  15. 15.
    C.N. Xu, X.G. Zheng, T. Wantanabe, M. Akiyama, I. Usui, Thin Solid Films 352, 273–278 (1999)CrossRefGoogle Scholar
  16. 16.
    I.P. Sahu, D.P. Bisen, N. Brahme, Displays 38, 68–76 (2015)CrossRefGoogle Scholar
  17. 17.
    I.P. Sahu, D.P. Bisen, N. Brahme, Displays 35, 279–286 (2014)CrossRefGoogle Scholar
  18. 18.
    JCPDS file number 77-1149, JCPDS International Center for Diffraction DataGoogle Scholar
  19. 19.
    M.A. Salim, R. Hussain, M.S. Abdullah, S. Abdullah, N.S. Alias, S.A. Ahmad Fuzi, M.N. Md Yusuf, K.M. Mahbor, Solid State Sci. Technol. 17, 59–64 (2009)Google Scholar
  20. 20.
    I.P. Sahu, D.P. Bisen, N. Brahme, L. Wanjari, R.K. Tamrakar, Res. Chem. Intermed. (2015). doi: 10.1007/s11164-015-1929-1 Google Scholar
  21. 21.
    C. Chang, D. Mao, J. Alloys Compd. 390, 134 (2005)Google Scholar
  22. 22.
    G. T. Chandrappa, S. Ghosh, K. C. Patil, J. Mater. Syn. Process. 72–73 (1999)Google Scholar
  23. 23.
    I.P. Sahu, D.P. Bisen, N. Brahme, Lumin. J. Biol. Chem. Lumin. (2015). doi: 10.1002/bio.2869 Google Scholar
  24. 24.
    J. Qiu, K. Miura, H. Inouye, Appl. Phys. Lett. 73, 1763–1765 (1998)CrossRefGoogle Scholar
  25. 25.
    C.Y. Li, Y.N. Yu, S.B. Wang, Q. Su, J. Non-Cryst. Solids 321, 191–196 (2003)CrossRefGoogle Scholar
  26. 26.
    A. Nag, T.R.N. Kutty, Mater. Res. Bull. 39, 331–342 (2004)CrossRefGoogle Scholar
  27. 27.
    T. Katsumata, R. Sakai, S. Komuro, T. Morikawa, J. Electrochem. Soc. 150, 111–114 (2003)CrossRefGoogle Scholar
  28. 28.
    H.N. Luitel, T. Watari, R. Chand, T. Torikai, M. Yada, J. Mater. 2013, 10 (2013)Google Scholar
  29. 29.
    J. Wang, S. Wang, Q. Su, J. Solid State Chem. 177, 895 (2004)CrossRefGoogle Scholar
  30. 30.
    S.W.S. McKeever, Thermoluminescence of Solids (Cambridge University Press, New York, 1988)Google Scholar
  31. 31.
    A.J.J. Bos, Theory of thermoluminescence. Radiat. Meas. 41, 45–56 (2007)CrossRefGoogle Scholar
  32. 32.
    V. Pagonis, G. Kitis, C. Furetta, Numerical and Practical Exercises in Thermoluminescence (Springer, Berlin, 2006)Google Scholar
  33. 33.
    R. Chen, S.W.S. McKeever, Theory of Thermoluminescence and Related Phenomenon (World Scientific Press, Singapore, 1997)CrossRefGoogle Scholar
  34. 34.
    M. Mashangva, M.N. Singh, T.B. Singh, Indian J. Pure Appl. Phys. 49, 583–589 (2011)Google Scholar
  35. 35.
    F.M. Emena, N. Kulcu, A.N. Yazıcı, Eur. J. Chem. 1(1), 28–32 (2010)CrossRefGoogle Scholar
  36. 36.
    A.K. Parchur, R.S. Ningthoujam, Dalton Trans. 40, 7590 (2011)CrossRefGoogle Scholar
  37. 37.
    G.S. Rama Raju, J.Y. Park, H.C. Jung, B.K. Moon, J.H. Jeong, J.H. Kim, Curr. Appl. Phys. 9, 92 (2009)CrossRefGoogle Scholar
  38. 38.
    N.N. Yamashita, J. Phys. Soc. Jpn. 35, 1089 (1973)CrossRefGoogle Scholar
  39. 39.
    R. Pang, C. Li, L. Shi, Q. Su, J. Phys. Chem. Solids 70, 303–306 (2009)CrossRefGoogle Scholar
  40. 40.
    J. Kuang, Y. Liu, J. Zhang, J. Solid State Chem. 179, 266–269 (2006)CrossRefGoogle Scholar
  41. 41.
    Y. Chen, X. Cheng, M. Liu, Z. Qi, C. Shi, J. Lumin. 129, 531–535 (2009)CrossRefGoogle Scholar
  42. 42.
    A. Zukauskas, M.S. Shur, R. Gaska, Introduction to Solid State Lighting (Wiley, New York, 2002)Google Scholar
  43. 43.
    CIE 1931. International Commission on Illumination. Publication CIE no. 15 (E-1.3.1) 1931Google Scholar
  44. 44.
    C.S. McCamy, Color Res. Appl. 17, 142–144 (1992)CrossRefGoogle Scholar
  45. 45.
    I.P. Sahu, D.P. Bisen, N. Brahme, R.K. Tamrakar, R. Shrivastava, J. Mater. Sci.: Mater. Electron. (2015). doi: 10.1007/s10854-015-3563-5 Google Scholar
  46. 46.
    R. Rajeswari, C.K. Jayasankar, D. Ramachari, S. Surendra Babu, Ceram. Int. 39, 7523–7529 (2013)CrossRefGoogle Scholar
  47. 47.
    T. Erdem, S. Nizamogul, X.W. Sun, H.V. Demir, Opt. Express 18, 340–347 (2010)CrossRefGoogle Scholar
  48. 48.
    B.M. Mothudi, O.M. Ntwaeaborwa, S.S. Pitale, H.C. Swart, J. Alloys Compd. 508, 262–265 (2010)CrossRefGoogle Scholar
  49. 49.
    T. Aitasalo, J. Holsa, H. Jungner, M. Lastusaari, J. Niittykoski, J. Phys. Chem. B 110, 4589–4598 (2006)CrossRefGoogle Scholar
  50. 50.
    K.V.D. Eeckhout, P.F. Smet, D. Poelman, Materials 3, 2536–2566 (2010)CrossRefGoogle Scholar
  51. 51.
    D.R. Vij, Luminescence of Solids (Plenum Press, New York, 1998)CrossRefGoogle Scholar
  52. 52.
    B.P. Chandra, J. Lumin. 131, 1203–1210 (2011)CrossRefGoogle Scholar
  53. 53.
    I.P. Sahu, D.P. Bisen, N. Brahme, R. Sharma, Res. Chem. Intermed. (2014). doi: 10.1007/s11164-014-1767-6 Google Scholar
  54. 54.
    I.P. Sahu, D.P. Bisen, N. Brahme, Lumin. J. Biol. Chem. Lumin. 30(5), 526–532 (2015)CrossRefGoogle Scholar
  55. 55.
    I.P. Sahu, D.P. Bisen, N. Brahme, L. Wanjari, R.K. Tamrakar, Res. Chem. Intermed. (2015). doi: 10.1007/s11164-015-1929-1 Google Scholar
  56. 56.
    B.P. Chandra, R.A. Rathore, Cryst. Res. Technol. 30, 885–896 (1995)CrossRefGoogle Scholar
  57. 57.
    I.P. Sahu, D.P. Bisen, N. Brahme, M. Ganjir, Lumin. J. Biol. Chem. Lumin. (2015). doi: 10.1002/bio.2900 Google Scholar
  58. 58.
    H. Zhang, H. Yamada, N. Terasaki, C.N. Xu, Thin Solid Films 518, 610–613 (2009)CrossRefGoogle Scholar
  59. 59.
    I.P. Sahu, D.P. Bisen, N. Brahme, R.K. Tamrakar, J. Lumin. 167, 278–288 (2015)CrossRefGoogle Scholar
  60. 60.
    H. Zhang, H. Yamada, N. Terasaki, C.N. Xu, Phys. E 42, 2872–2875 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ishwar Prasad Sahu
    • 1
    Email author
  • D. P. Bisen
    • 1
  • Nameeta Brahme
    • 1
  • Raunak Kumar Tamrakar
    • 2
  • Ravi Shrivastava
    • 3
  1. 1.School of Studies in Physics and AstrophysicsPt. Ravishankar Shukla UniversityRaipurIndia
  2. 2.Department of Applied PhysicsBhilai Institute of TechnologyDurgIndia
  3. 3.Department of PhysicsICFAI UniversityRaipurIndia

Personalised recommendations